

All-In-One Code Framework
Coding Standards

by Dan Ruder, Jialiang Ge

This document describes the coding style guideline for native C++
and .NET (C# and VB.NET) programming used by the Microsoft All-
In-One Code Framework project team.

Acknowledgement

Each chapter in this document has to acknowledge Dan Ruder, a Principal Escalation Engineer of Microsoft. Dan
carefully reviewed every word, and contributed review comments on significant portions of the book based on
his more than 20 years’ programming experience. Working with the nice man has been a special treat to me.

I also thank four managers at Microsoft for continuously supporting and sponsoring the work: Vivian Luo, Allen
Ding, Felix Wu and Mei Liang.

This document wouldn’t contain the depth of technical details or the level of completeness it has without the
input of the following people.

Alexei Levenkov , Hongye Sun, Jie Wang, Ji Zhou, Michael Sun, Kira Qian, Allen Chen, Yi-Lun Luo, Steven
Cheng, Wen-Jun Zhang, Linda Liu

Some chapters derive from several Microsoft product teams’ coding standards. I appreciate their sharing.

The coding standards are continuously evolving. If you discover a new best practice or a topic that is not
covered, please bring that to the attention of the All-In-One Code Framework Project Group
(onecode@microsoft.com). I look forward to appreciating your contributions. 

Disclaimer

This coding-standard document is provided "AS IS" without warranty of any kind, either expressed or implied,
including but not limited to the implied warranties of merchantability and/or fitness for a particular purpose.

Please feel free to use the coding standards when you are writing VC++/VC#/VB.NET code. It would be nice,
however, if you could inform us that you are using the document, or send us your feedback. You may contact us
at our email address: onecode@microsoft.com.

mailto:onecode@microsoft.com
mailto:onecode@microsoft.com

Table of Contents

1 Overview .. 1

1.1 Principles & Themes ... 1
1.2 Terminology .. 1

2 General Coding Standards ... 3

2.1 Clarity and Consistency .. 3
2.2 Formatting and Style .. 3
2.3 Using Libraries .. 5
2.4 Global Variables .. 5
2.5 Variable Declarations and Initalizations ... 5
2.6 Function Declarations and Calls ... 6
2.7 Statements ... 8
2.8 Enums ... 8
2.9 Whitespace ... 13
2.10 Braces ... 14
2.11 Comments .. 15
2.12 Regions ... 23

3 C++ Coding Standards ... 25

3.1 Compiler Options .. 25
3.2 Files and Structure .. 26
3.3 Naming Conventions .. 27
3.4 Pointers .. 30
3.5 Constants .. 31
3.6 Casting .. 32
3.7 Sizeof .. 32
3.8 Strings ... 33
3.9 Arrays .. 34
3.10 Macros .. 35
3.11 Functions .. 35
3.12 Structures ... 38
3.13 Classes .. 38
3.14 COM .. 44
3.15 Allocations .. 45
3.16 Errors and Exceptions ... 46
3.17 Resource Cleanup ... 48

3.18 Control Flow ... 50

4 .NET Coding Standards .. 54

4.1 Design Guidelines for Developing Class Libraries ... 54
4.2 Files and Structure .. 54
4.3 Assembly Properties ... 54
4.4 Naming Convensions .. 54
4.5 Constants .. 57
4.6 Strings ... 58
4.7 Arrays and Collections .. 59
4.8 Structures ... 61
4.9 Classes .. 62
4.10 Namespaces ... 65
4.11 Errors and Exceptions ... 65
4.12 Resource Cleanup ... 68
4.13 Interop .. 81

Page 1

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

1 Overview

This document defines the native C++ and .NET coding standard for the All-In-One Code Framework project
team. This standard derives from the experience of product development efforts and is continuously evolving. If
you discover a new best practice or a topic that is not covered, please bring that to the attention of the All-In-
One Code Framework Project Group and have the conclusion added to this document.

No set of guidelines will satisfy everyone. The goal of a standard is to create efficiencies across a community of
developers. Applying a set of well-defined coding standards will result in code with fewer bugs, and better
maintainability. Adopting an unfamiliar standard may be awkward initially, but the pain fades quickly and the
benefits are quickly realized, especially when you inherit ownership of others' code.

1.1 Principles & Themes
High-quality samples exhibit the following characteristics because customers use them as examples of best
practices:

1. Understandable. Samples must be clearly readable and straightforward. They must showcase the key
things they’re designed to demonstrate. The relevant parts of a sample should be easy to reuse.
Samples should not contain unnecessary code. They must include appropriate documentation.

2. Correct. Samples must demonstrate properly how to perform the key things they are designed to teach.
They must compile cleanly, run correctly as documented, and be tested.

3. Consistent. Samples should follow consistent coding style and layout to make the code easier to read.
Likewise, samples should be consistent with each other to make them easier to use together.
Consistency shows craftsmanship and attention to detail.

4. Modern. Samples should demonstrate current practices such as use of Unicode, error handling,
defensive programming, and portability. They should use current recommendations for runtime library
and API functions. They should use recommended project & build settings.

5. Safe. Samples must comply with legal, privacy, and policy standards. They must not demonstrate hacks
or poor programming practices. They must not permanently alter machine state. All installation and
execution steps must be reversible.

6. Secure. The samples should demonstrate how to use secure programming practices such as least
privilege, secure versions of runtime library functions, and SDL-recommended project settings.

The proper use of programming practices, design, and language features determines how well samples can
achieve these. This code standard is designed to help you create samples that serve as “best practices” for
customers to emulate.

1.2 Terminology
Through-out this document there will be recommendations or suggestions for standards and practices. Some
practices are very important and must be followed, others are guidelines that are beneficial in certain scenarios

http://1code.codeplex.com/
http://1code.codeplex.com/
mailto:onecode@microsoft.com
mailto:onecode@microsoft.com

Page 2

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

but are not applicable everywhere. In order to clearly state the intent of the standards and practices that are
discussed we will use the following terminology.

Wording Intent Justification

 Do... This standard or practice should be followed in all
cases. If you think that your specific application is
exempt, it probably isn't.

These standards are present to
mitigate bugs.

 Do Not... This standard or practice should never be applied.
 You
should...

This standard or practice should be followed in most
cases. These standards are typically

stylistic and attempt to promote a
consistent and clear style.  You should

not...
This standard or practice should not be followed,
unless there's reasonable justification.

 You can… This standard or practice can be followed if you
want to; it's not necessarily good or bad. There are
probably implications to following the practice
(dependencies, or constraints) that should be
considered before adopting it.

These standards are typically
stylistic, but are not ubiquitously
adopted.

http://1code.codeplex.com/

Page 3

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

2 General Coding Standards

These general coding standards can be applied to all languages - they provide high-level guidance to the style,
formatting and structure of your source code.

2.1 Clarity and Consistency
 Do ensure that clarity, readability and transparency are paramount. These coding standards strive to ensure
that the resultant code is easy to understand and maintain, but nothing beats fundamentally clear, concise, self-
documenting code.

 Do ensure that when applying these coding standards that they are applied consistently.

2.2 Formatting and Style
 Do not use tabs. It's generally accepted across Microsoft that tabs shouldn't be used in source files - different
text editors use different spacing to render tabs, and this causes formatting confusion. All code should be
written using four spaces for indentation.

Visual Studio text editor can be configured to insert spaces for tabs.

 You should limit the length of lines of code. Having overly long lines inhibits the readability of code. Break the
code line when the line length is greater than column 78 for readability. If column 78 looks too narrow, use
column 86 or 90.

Visual C++ sample:

http://1code.codeplex.com/

Page 4

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Visual C# sample:

Visual Basic sample:

 Do use a fixed-width font, typically Courier New, in your code editor.

http://1code.codeplex.com/

Page 5

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

2.3 Using Libraries
 Do not reference unnecessary libraries, include unnecessary header files, or reference unnecessary
assemblies. Paying attention to small things like this can improve build times, minimize chances for mistakes,
and give readers a good impression.

2.4 Global Variables
 Do minimize global variables. To use global variables properly, always pass them to functions through
parameter values. Never reference them inside of functions or classes directly because doing so creates a side
effect that alters the state of the global without the caller knowing. The same goes for static variables. If you
need to modify a global variable, you should do so either as an output parameter or return a copy of the global.

2.5 Variable Declarations and Initalizations
 Do declare local variables in the minimum scope block that can contain them, typically just before use if the
language allows; otherwise, at the top of that scope block.

 Do initialize variables when they are declared.

 Do declare and initialize/assign local variables on a single line where the language allows it. This reduces
vertical space and makes sure that a variable does not exist in an un-initialized state or in a state that will
immediately change.

// C++ sample:

HANDLE hToken = NULL;

PSID pIntegritySid = NULL;

http://1code.codeplex.com/

Page 6

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

STARTUPINFO si = { sizeof(si) };

PROCESS_INFORMATION pi = { 0 };

// C# sample:

string name = myObject.Name;

int val = time.Hours;

' VB.NET sample:

Dim name As String = myObject.Name

Dim val As Integer = time.Hours

 Do not declare multiple variables in a single line. One declaration per line is recommended since it
encourages commenting, and could avoid confusion. As a Visual C++ example,

Good:
CodeExample *pFirst = NULL; // Pointer of the first element.

CodeExample *pSecond = NULL; // Pointer of the second element.

Bad:
CodeExample *pFirst, *pSecond;

The latter example is often mistakenly written as:
CodeExample *pFirst, pSecond;

Which is actually equivalent to:

CodeExample *pFirst;

CodeExample pSecond;

2.6 Function Declarations and Calls
The function/method name, return value and parameter list can take several forms. Ideally this can all fit on a
single line. If there are many arguments that don't fit on a line those can be wrapped, many per line or one per
line. Put the return type on the same line as the function/method name. For example,

Single Line Format:

// C++ function declaration sample:

HRESULT DoSomeFunctionCall(int param1, int param2, int *param3);

// C++ / C# function call sample:

hr = DoSomeFunctionCall(param1, param2, param3);

' VB.NET function call sample:

hr = DoSomeFunctionCall(param1, param2, param3)

Multiple Line Formats:

// C++ function declaration sample:

http://1code.codeplex.com/

Page 7

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

HRESULT DoSomeFunctionCall(int param1, int param2, int *param3,

int param4, int param5);

// C++ / C# function call sample:

hr = DoSomeFunctionCall(param1, param2, param3,

param4, param5);

' VB.NET function call sample:

hr = DoSomeFunctionCall(param1, param2, param3, _

 param4, param5)

When breaking up the parameter list into multiple lines, each type/parameter pair should line up under the
preceding one, the first one being on a new line, indented one tab. Parameter lists for function/method calls
should be formatted in the same manner.

// C++ function declaration sample:

HRESULT DoSomeFunctionCall(

 HWND hwnd, // You can comment parameters, too

 T1 param1, // Indicates something

 T2 param2, // Indicates something else

 T3 param3, // Indicates more

 T4 param4, // Indicates even more

 T5 param5); // You get the idea

// C++ / C# function call sample:

hr = DoSomeFunctionCall(

 hwnd,

 param1,

 param2,

 param3,

 param4,

 param5);

' VB.NET function call sample:

hr = DoSomeFunctionCall(_

 hwnd, _

 param1, _

 param2, _

 param3, _

 param4, _

 param5)

 Do order parameters, grouping the in parameters first, the out parameters last. Within the group, order the
parameters based on what will help programmers supply the right values. For example, if a function takes
arguments named “left” and “right”, put “left” before “right” so that their place match their names. When
designing a series of functions which take the same arguments, use a consistent order across the functions. For
example, if one function takes an input handle as the first parameter, all of the related functions should also
take the same input handle as the first parameter.

http://1code.codeplex.com/

Page 8

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

2.7 Statements
 Do not put more than one statement on a single line because it makes stepping through the code in a
debugger much more difficult.

Good:
// C++ / C# sample:

a = 1;

b = 2;

' VB.NET sample:

If (IsAdministrator()) Then

 Console.WriteLine("YES")

End If

Bad:
// C++ / C# sample:

a = 1; b = 2;

' VB.NET sample:

If (IsAdministrator()) Then Console.WriteLine("YES")

2.8 Enums
 Do use an enum to strongly type parameters, properties, and return values that represent sets of values.

 Do favor using an enum over static constants or “#define” values . An enum is a structure with a set of static
constants. The reason to follow this guideline is because you will get some additional compiler and reflection
support if you define an enum versus manually defining a structure with static constants.

Good:
// C++ sample:

enum Color

{

 Red,

 Green,

 Blue

};

// C# sample:

public enum Color

{

 Red,

 Green,

 Blue

}

http://1code.codeplex.com/

Page 9

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

' VB.NET sample:

Public Enum Color

 Red

 Green

 Blue

End Enum

Bad:
// C++ sample:

const int RED = 0;

const int GREEN = 1;

const int BLUE = 2;

#define RED 0

#define GREEN 1

#define BLUE 2

// C# sample:

public static class Color

{

 public const int Red = 0;

 public const int Green = 1;

 public const int Blue = 2;

}

' VB.NET sample:

Public Class Color

 Public Const Red As Integer = 0

 Public Const Green As Integer = 1

 Public Const Blue As Integer = 2

End Class

 Do not use an enum for open sets (such as the operating system version, names of your friends, etc.).

 Do provide a value of zero on simple enums. Consider calling the value something like “None.” If such value is
not appropriate for this particular enum, the most common default value for the enum should be assigned the
underlying value of zero.

// C++ sample:

enum Compression

{

 None = 0,

 GZip,

 Deflate

};

// C# sample:

http://1code.codeplex.com/

Page 10

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

public enum Compression

{

 None = 0,

 GZip,

 Deflate

}

' VB.NET sample:

Public Enum Compression

 None = 0

 GZip

 Deflate

End Enum

 Do not use Enum.IsDefined for enum range checks in .NET. There are really two problems with
Enum.IsDefined. First it loads reflection and a bunch of cold type metadata, making it a surprisingly expensive
call. Second, there is a versioning issue here.

Good:
// C# sample:

if (c > Color.Black || c < Color.White)

{

 throw new ArgumentOutOfRangeException(...);

}

' VB.NET sample:

If (c > Color.Black Or c < Color.White) Then

 Throw New ArgumentOutOfRangeException(...);

End If

Bad:
// C# sample:

if (!Enum.IsDefined(typeof(Color), c))

{

 throw new InvalidEnumArgumentException(...);

}

' VB.NET sample:

If Not [Enum].IsDefined(GetType(Color), c) Then

 Throw New ArgumentOutOfRangeException(...);

End If

2.8.1 Flag Enums
Flag enums are designed to support bitwise operations on the enum values. A common example of the flags
enum is a list of options.

 Do apply the System.FlagsAttribute to flag enums in .NET. Do not apply this attribute to simple enums.

http://1code.codeplex.com/

Page 11

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Do use powers of two for the flags enum values so they can be freely combined using the bitwise OR
operation. For example,

// C++ sample:

enum AttributeTargets

{

 Assembly = 0x0001,

 Class = 0x0002,

 Struct = 0x0004

 ...

};

// C# sample:

[Flags]

public enum AttributeTargets

{

 Assembly = 0x0001,

 Class = 0x0002,

 Struct = 0x0004,

 ...

}

' VB.NET sample:

<Flags()> _

Public Enum AttributeTargets

 Assembly = &H1

 Class = &H2

 Struct = &H4

 ...

End Enum

 You should provide special enum values for commonly used combinations of flags. Bitwise operations are an
advanced concept and should not be required for simple tasks. FileAccess.ReadWrite is an example of such a
special value. However, you should not create flag enums where certain combinations of values are invalid.

// C++ sample:

enum FileAccess

{

 Read = 0x1,

 Write = 0x2,

 ReadWrite = Read | Write

};

// C# sample:

[Flags]

public enum FileAccess

http://1code.codeplex.com/

Page 12

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

{

 Read = 0x1,

 Write = 0x2,

 ReadWrite = Read | Write

}

' VB.NET sample:

<Flags()> _

Public Enum FileAccess

 Read = &H1

 Write = &H2

 ReadWrite = Read Or Write

End Enum

 You should not use flag enum values of zero, unless the value represents “all flags are cleared” and is named
appropriately as “None”. The following C# example shows a common implementation of a check that
programmers use to determine if a flag is set (see the if-statement below). The check works as expected for all
flag enum values except the value of zero, where the Boolean expression always evaluates to true.

Bad:
[Flags]

public enum SomeFlag

{

 ValueA = 0, // This might be confusing to users

 ValueB = 1,

 ValueC = 2,

 ValueBAndC = ValueB | ValueC,

}

SomeFlag flags = GetValue();

if ((flags & SomeFlag.ValueA) == SomeFlag.ValueA)

{

 ...

}

Good:
[Flags]

public enum BorderStyle

{

 Fixed3D = 0x1,

 FixedSingle = 0x2,

 None = 0x0

}

if (foo.BorderStyle == BorderStyle.None)

{

 ...

}

http://1code.codeplex.com/

Page 13

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

2.9 Whitespace

2.9.1 Blank Lines
 You should use blank lines to separate groups of related statements. Omit extra blank lines that do not make
the code easier to read. For example, you can have a blank line between variable declarations and code.

Good:
// C++ sample:

void ProcessItem(const Item& item)

{

 int counter = 0;

 if(...)

 {

 }

}

Bad:
// C++ sample:

void ProcessItem(const Item& item)

{

 int counter = 0;

 // Implementation starts here

 //

 if(...)

 {

 }

}

In this example of bad usage of blank lines, there are multiple blank lines between the local variable declarations,
and multiple blank likes after the ‘if’ block.

 You should use two blank lines to separate method implementations and class declarations.

2.9.2 Spaces

Spaces improve readability by decreasing code density. Here are some guidelines for the use of space characters
within code:

 You should use spaces within a line as follows.

Good:
// C++ / C# sample:

http://1code.codeplex.com/

Page 14

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

CreateFoo(); // No space between function name and parenthesis

Method(myChar, 0, 1); // Single space after a comma

x = array[index]; // No spaces inside brackets

while (x == y) // Single space before flow control statements

if (x == y) // Single space separates operators

' VB.NET sample:

CreateFoo() ' No space between function name and parenthesis

Method(myChar, 0, 1) ' Single space after a comma

x = array(index) ' No spaces inside brackets

While (x = y) ' Single space before flow control statements

If (x = y) Then ' Single space separates operators

Bad:
// C++ / C# sample:

CreateFoo (); // Space between function name and parenthesis

Method(myChar,0,1); // No spaces after commas

CreateFoo(myChar, 0, 1); // Space before first arg, after last arg

x = array[index]; // Spaces inside brackets

while(x == y) // No space before flow control statements

if (x==y) // No space separates operators

' VB.NET sample:

CreateFoo () ' Space between function name and parenthesis

Method(myChar,0,1) ' No spaces after commas

CreateFoo(myChar, 0, 1) ' Space before first arg, after last arg

x = array(index) ' Spaces inside brackets

While(x = y) ' No space before flow control statements

If (x=y) Then ' No space separates operators

2.10 Braces
 Do use Allman bracing style in All-In-One Code Framework code samples.

The Allman style is named after Eric Allman. It is sometimes referred to as "ANSI style". The style puts the brace
associated with a control statement on the next line, indented to the same level as the control statement.
Statements within the braces are indented to the next level.

Good:
// C++ / C# sample:

if (x > 5)

{

 y = 0;

}

' VB.NET sample:

If (x > 5) Then

http://1code.codeplex.com/
http://1code.codeplex.com/

Page 15

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 y = 0

End If

Bad (in All-In-One Code Framework samples):
// C++ / C# sample:

if (x > 5) {

 y = 0;

}

 You should use braces around single line conditionals. Doing this makes it easier to add code to these
conditionals in the future and avoids ambiguities should the tabbing of the file become disturbed.

Good:
// C++ / C# sample:

if (x > 5)

{

 y = 0;

}

' VB.NET sample:

If (x > 5) Then

 y = 0

End If

Bad:
// C++ / C# sample:

if (x > 5) y = 0;

' VB.NET sample:

If (x > 5) Then y = 0

2.11 Comments
 You should use comments that summarize what a piece of code is designed to do and why. Do not use
comments to repeat the code.

Good:
// Determine whether system is running Windows Vista or later operating

// systems (major version >= 6) because they support linked tokens, but

// previous versions (major version < 6) do not.

Bad:
// The following code sets the variable i to the starting value of the

// array. Then it loops through each item in the array.

 You should use ‘//’ comments instead of ‘/* */’ for comments for C++ and C# code comments. The single-line
syntax (// …) is preferred even when a comment spans multiple lines.

http://1code.codeplex.com/

Page 16

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

// Determine whether system is running Windows Vista or later operating

// systems (major version >= 6) because they support linked tokens, but

// previous versions (major version < 6) do not.

if (Environment.OSVersion.Version.Major >= 6)

{

}

' Get and display the process elevation information (IsProcessElevated)

' and integrity level (GetProcessIntegrityLevel). The information is not

' available on operating systems prior to Windows Vista.

If (Environment.OSVersion.Version.Major >= 6) Then

End If

 You should indent comments at the same level as the code they describe.

 You should use full sentences with initial caps, a terminating period and proper punctuation and spelling in
comments.

Good:
// Intialize the components on the Windows Form.

InitializeComponent();

' Intialize the components on the Windows Form.

InitializeComponent()

Bad:
//intialize the components on the Windows Form.

InitializeComponent();

'intialize the components on the Windows Form

InitializeComponent()

2.11.1 Inline Code Comments
Inline comments should be included on their own line and should be indented at the same level as the code they
are commenting on, with a blank line before, but none after. Comments describing a block of code should
appear on a line by themselves, indented as the code they describe, with one blank line before it and one blank
line after it. For example:

if (MAXVAL >= exampleLength)

{

 // Reprort the error.

 ReportError(GetLastError());

 // The value is out of range, we cannot continue.

 return E_INVALIDARG;

}

http://1code.codeplex.com/

Page 17

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Inline comments are permissible on the same line as the actual code only when giving a brief description of a
structure member, class member variable, parameter, or a short statement. In this case it is a good idea to
align the comments for all variables. For example:

class Example

{

public:

 ...

 void TestFunction

{

 ...

 do

 {

 ...

 }

 while (!fFinished); // Continue if not finished.

 }

private:

 int m_length; // The length of the example

 float m_accuracy; // The accuracy of the example

};

 You should not drown your code in comments. Commenting every line with obvious descriptions of what the
code does actually hinders readability and comprehension. Single-line comments should be used when the code
is doing something that might not be immediately obvious.

The following example contains many unnecessary comments:

Bad:
// Loop through each item in the wrinkles array

for (int i = 0; i <= nLastWrinkle; i++)

{

 Wrinkle *pWrinkle = apWrinkles[i]; // Get the next wrinkle

 if (pWrinkle->IsNew() && // Process if it’s a new wrinkle

 nMaxImpact < pWrinkle->GetImpact()) // And it has the biggest impact

 {

 nMaxImpact = pWrinkle->GetImpact(); // Save its impact for comparison

 pBestWrinkle = pWrinkle; // Remember this wrinkle as well

 }

}

A better implementation would be:

Good:

http://1code.codeplex.com/

Page 18

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

// Loop through each item in the wrinkles array, find the Wrinkle with

// the largest impact that is new, and store it in ‘pBestWrinkle’.

for (int i = 0; i <= nLastWrinkle; i++)

{

 Wrinkle *pWrinkle = apWrinkles[i];

 if (pWrinkle->IsNew() && nMaxImpact < pWrinkle->GetImpact())

 {

 nMaxImpact = pWrinkle->GetImpact();

 pBestWrinkle = pWrinkle;

 }

}

 You should add comments to call out non-intuitive or behavior that is not obvious from reading the code.

2.11.2 File Header Comments

 Do have a file header comment at the start of every human-created code file. The header comment
templates are as follows:

VC++ and VC# file header comment template:

/****************************** Module Header ******************************\

Module Name: <File Name>

Project: <Sample Name>

Copyright (c) Microsoft Corporation.

<Description of the file>

This source is subject to the Microsoft Public License.

See http://www.microsoft.com/opensource/licenses.mspx#Ms-PL.

All other rights reserved.

THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

***/

VB.NET file header comment template:

'***************************** Module Header *******************************\

' Module Name: <File Name>

' Project: <Sample Name>

' Copyright (c) Microsoft Corporation.

'

' <Description of the file>

'

' This source is subject to the Microsoft Public License.

' See http://www.microsoft.com/opensource/licenses.mspx#Ms-PL.

http://1code.codeplex.com/

Page 19

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

' All other rights reserved.

'

' THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

' EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED

' WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

'***/

For example,

/****************************** Module Header ******************************\

Module Name: CppUACSelfElevation.cpp

Project: CppUACSelfElevation

Copyright (c) Microsoft Corporation.

User Account Control (UAC) is a new security component in Windows Vista and

newer operating systems. With UAC fully enabled, interactive administrators

normally run with least user privileges. This example demonstrates how to

check the privilege level of the current process, and how to self-elevate

the process by giving explicit consent with the Consent UI.

This source is subject to the Microsoft Public License.

See http://www.microsoft.com/opensource/licenses.mspx#Ms-PL.

All other rights reserved.

THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

***/

2.11.3 Class Comments

 You should provide banner comments for all classes and structures that are non-trivial. The level of
commenting should be appropriate based on the audience of the code.

C++ class comment template:

//

// NAME: class <Class name>

// DESCRIPTION: <Class description>

//

C# and VB.NET use .NET descriptive XML Documentation comments. When you compile .NET projects with /doc
the compiler will search for all XML tags in the source code and create an XML documentation file.

C# class comment template:

/// <summary>

/// <Class description>

http://1code.codeplex.com/

Page 20

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

/// </summary>

VB.NET class comment template:

''' <summary>

''' <Class description>

''' </summary>

For example,

//

// NAME: class CodeExample

// DESCRIPTION: The CodeExample class represents an example of code, and

// tracks the length and complexity of the example.

//

class CodeExample

{

 ...

};

/// <summary>

/// The CodeExample class represents an example of code, and tracks

/// the length and complexity of the example.

/// </summary>

public class CodeExample

{

 ...

}

2.11.4 Function Comments

 You should provide banner comments for all public and non-public functions that are not trivial. The level of
commenting should be appropriate based on the audience of the code.

C++ function comment template:

/*---

FUNCTION: <Funtion prototype>

PURPOSE:

 <Function description>

PARAMETERS:

 <Parameter name> –<Parameter description>

RETURN VALUE:

 <Description of function return value>

http://1code.codeplex.com/

Page 21

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

EXCEPTION:

 <Exception that may be thrown by the function>

EXAMPLE CALL:

 <Example call of the function>

REMARKS:

 <Additional remarks of the function>

---*/

C# and VB.NET use descriptive XML Documentation comments. At least a <summary> element and also a
<parameters> element and <returns> element, where applicable, are required. Methods that throw exceptions
should make use of the <exception> element to indicate to consumers what exceptions may be thrown.

C# function comment template:

/// <summary>

/// <Function description>

/// </summary>

/// <param name="Parameter name">

/// <Parameter description>

/// </param>

/// <returns>

/// <Description of function return value>

/// </returns>

/// <exception cref="<Exception type>">

/// <Exception that may be thrown by the function>

/// </exception>

VB.NET function comment template:

''' <summary>

''' <Function description>

''' </summary>

''' <param name="Parameter name">

''' <Parameter description>

''' </param>

''' <returns>

''' <Description of function return value>

''' </returns>

''' <exception cref="<Exception type>">

''' <Exception that may be thrown by the function>

''' </exception>

For example,

/*---

http://1code.codeplex.com/

Page 22

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

FUNCTION: IsUserInAdminGroup(HANDLE hToken)

PURPOSE:

 The function checks whether the primary access token of the process

 belongs to user account that is a member of the local Administrators

 group, even if it currently is not elevated.

PARAMETERS:

 hToken – the handle to an access token.

RETURN VALUE:

 Returns TRUE if the primary access token of the process belongs to user

 account that is a member of the local Administrators group. Returns FALSE

 if the token does not.

EXCEPTION:

 If this function fails, it throws a C++ DWORD exception which contains

 the Win32 error code of the failure.

 EXAMPLE CALL:

 try

 {

 if (IsUserInAdminGroup(hToken))

 wprintf (L"User is a member of the Administrators group\n");

 else

 wprintf (L"User is not a member of the Administrators group\n");

 }

 catch (DWORD dwError)

 {

 wprintf(L"IsUserInAdminGroup failed w/err %lu\n", dwError);

 }

---*/

/// <summary>

/// The function checks whether the primary access token of the process

/// belongs to user account that is a member of the local Administrators

/// group, even if it currently is not elevated.

/// </summary>

/// <param name="token">The handle to an access token</param>

/// <returns>

/// Returns true if the primary access token of the process belongs to

/// user account that is a member of the local Administrators group.

/// Returns false if the token does not.

/// </returns>

/// <exception cref="System.ComponentModel.Win32Exception">

/// When any native Windows API call fails, the function throws a

/// Win32Exception with the last error code.

http://1code.codeplex.com/

Page 23

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

/// </exception>

Any method or function which can fail with side-effects should have those side-effects clearly communicated in
the function comment. As a general rule, code should be written so that it has no side-effects in error or failure
cases; the presence of such side-effects should have some clear justification when the code is written. (Such
justification is not necessary for routines which zero-out or otherwise overwrite some output-only parameter.)

2.11.5 Commenting Out Code
Commenting out code is necessary when you demonstrate multiple ways of doing something. The ways except
the first one are commented out. Use [-or-] to separate the multiple ways. For example,

// C++ / C# sample:

// Demo the first solution.

DemoSolution1();

// [-or-]

// Demo the second solution.

//DemoSolution2();

' VB.NET sample:

' Demo the first solution.

DemoSolution1();

' [-or-]

' Demo the second solution.

'DemoSolution2();

2.11.6 TODO Comments
 Do not use TODO comments in any released samples. Every sample must be complete and not require a list
of unfinished tasks sprinkled throughout the code.

2.12 Regions
 Do use region declarations where there is a large amount of code that would benefit from this organization.
Grouping the large amount of code by scope or functionality improves readability and structure of the code.

C++ regions:

#pragma region "Helper Functions for XX"

...

#pragma endregion

C# regions:

#region Helper Functions for XX

http://1code.codeplex.com/

Page 24

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

...

#endregion

VB.NET regions:

#Region "Helper Functions for XX"

...

#End Region

http://1code.codeplex.com/

Page 25

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

3 C++ Coding Standards

These coding standards can be applied to native C++.

3.1 Compiler Options

3.1.1 Precompiled Header

 Do not use precompiled headers.

By default, Visual C++ projects use precompiled headers. This is a system whereby the large Windows headers
are compiled only once when you build stdafx.h/cpp. Every other .CPP file in your project needs to #include
"stdafx.h" as the first #include in order to build. The compiler specifically looks for the name "stdafx.h" to know
when to insert the precompiled header information.

In code samples, precompiled header must be turned off. In your project options, go to the C/C++ tab and select
the Precompiled headers category. Click the Not using precompiled headers radio button, and then click OK.
Make sure to modify All Configurations (including both Debug and Release configurations). Then, remove
#include<stdafx.h> from all source files.

http://1code.codeplex.com/

Page 26

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

3.1.2 Enable All Warnings, and Treat Them as Errors
 You should compile all code at the highest warning level.

 You should treat all warnings as errors.
The warnings provided by the compiler are often useful in identifying bad practices, or even subtle bugs. You can
use the compiler warnings as an extra level of verification on your code.

In Visual Studio you can enable warning level four in the properties for you project; on the ‘Property Pages’ for
your project, go to “Configuration Properties”, “C/C++”, “General” and set “Warning Level” to “Level 4”.

3.2 Files and Structure

3.2.1 stdafx.h, stdafx.cpp, targetver.h
 You should delete the stdafx.h, stdafx.cpp and targetver.h files generated by Visual Studio project template
to keep the code files simple. However, if you have a lot of standard header files to be shared by many code files,
you may create a single header file to include them, much like windows.h.

3.2.2 Header Files
 Do use include guards within a header file (internal include guards) to prevent unintended multiple inclusions
of the header file.

The #ifndef and #endif from the example, below, should be the first and last lines of the header file. The
following example shows how to use “#ifndef/#endif” as an include guard in “CodeExample.h”;

// File header comment goes first ...

#ifndef CODE_EXAMPLE_H_

#define CODE_EXAMPLE_H_

class CodeExample

{

 ...

};

#endif

You can also use “#pragma once” (a Microsoft Compiler specific extension) as an alternative to “#ifndef/#endif”
include guard:

// File header comment goes first ...

#pragma once

class CodeExample

{

http://1code.codeplex.com/

Page 27

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 ...

};

 You should not implement functions in header files. Header files should only contain the declarations of
functions and data structures. Their implementation should be in the .cpp files.

3.2.3 Implementation Files
Implementation files contain the actual function bodies for global functions, local functions, and class method
functions. An implementation file has the extension .c or .cpp. Note that an implementation file does not have
to implement an entire module. It can be split up and #include a common internal interface.

 You should keep declarations that don’t have to be exported inside the implementation file. Furthermore,
you should add the static keyword to limit their scope to just the compilation unit defined by the .cpp/.c file.
This will reduce changes of getting “multiply-defined symbol” errors during linking when two or more .cpp files
use the same internal variables.

3.3 Naming Conventions

3.3.1 General Naming Conventions

 Do use meaningful names for various types, functions, variables, constructs and data structures. Their use
should be plainly discernable from their name alone.

Single-character variables should only be used as counters (i, j) or as coordinates (x, y, z). As a rule-of-thumb a
variable should have a more descriptive name as its scope increases.

 You should not use shortenings or contractions as parts of identifier names. For example, use “GetWindow”
rather than “GetWin”. For functions of common types, thread procs, window procedures, dialog procedures use
the common suffixes for these “ThreadProc”, “DialogProc”, “WndProc”.

3.3.2 Capitalization Naming Rules for Identifiers
The following table describes the capitalization and naming rules for different types of identifiers.

Identifier Casing Naming Structure Example

Class PascalCasing Noun class ComplexNumber {...};
class CodeExample {...};
class StringList {...};

Enumeration PascalCasing Noun enum Type {...};

Function,
Method

PascalCasing Verb or
Verb-Noun

void Print()
void ProcessItem()

Interface PascalCasing
‘I’ prefix

Noun class IDictionary {...};

Structure All capital,
separate words
with ‘_’

Noun struct FORM_STREAM_HEADER

http://1code.codeplex.com/

Page 28

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Macro,
Constant

All capital,
separate words
with ‘_’

 #define BEGIN_MACRO_TABLE(name) ...
#define MACRO_TABLE_ENTRY(a, b, c) ...
#define END_MACRO_TABLE() ...
const int BLACK = 3;

Parameter,
Variable

camelCasing Noun exampleText, dwCount

Template
parameter

PascalCasing
‘T’ prefix

Noun T, TItem, TPolicy

3.3.3 Hungarian Notation
 You can use Hungarian notation in parameter and variable names. However, Hungarian notation is a relic that
makes code refactoring harder; i.e. change a type of a variable and you need to rename it everywhere.

The following table defines a set of suitable Hungarian notation tags should you choose to use Hungarian
notation.

Type Tag Description

bool, BOOL, bitfield f A flag. For example, BOOL fSucceeded;

BYTE An 8 bit unsigned quantity. The use of BYTEs should be
limited to opaque quantities, like cookies, bitfields, etc.

WORD An unsigned 16 bit quantity. The use of WORDs should be limited to opaque
quantities, like cookies, handles, bitfields, etc.

DWORD dw An unsigned 32 bit quantity. The use of DWORDs should be limited to
opaque quantities, like cookies, handles, bitfields, etc.

HRESULT hr HRESULT values are commonly used through-out Win32 for error or status
values.

VARIANT vt An OLE VARIANT.

HANDLE h A handle.

int,
unsigned int

 A 32 bit ordinal number (can be compared using <, <=, >, >=). NOTE: on 64
bit versions of Windows integer is 32 bits.

short,
unsigned short

 A 16-bit ordinal number. These tags should be rarely used; they are
acceptable in structures for disk formats and the heap.

long,
unsigned long

 A 32-bit ordinal number. These tags should be rarely used, as "int"
accomplishes the same thing and is preferred to "long".

__int64, LONGLONG,
ULONGLONG

 A 64-bit ordinal number.

TCHAR, wchar_t,
char

ch A character (sign unspecified). The “wchar_t” type is the preferred for wide
characters as it’s a C++ construct. We do not have different tags for char's
and TCHARS's because we use Unicode through the project. In the rare case
of a function that contains both char's and WCHAR's, use "ch" for char and
"wch" for wchar_t.

PWSTR, PCWSTR, psz A pointer to a zero-terminated string. Since we are using Unicode

http://1code.codeplex.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/win64/win64/abstract_data_models.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/win64/win64/abstract_data_models.asp

Page 29

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

wchar_t *,
PSTR, PCSTR, char *

throughout the project, we do not have different tags for PSTRs and
PWSTR's. We do not have different tags for char's and TCHARS's because we
use Unicode through the project. In the rare case of a function that contains
both PSTR's and PWSTRs, use "psz" for PSTR and "pwsz" for PWSTR. Outside
of MIDL use PWSTR and PSTR, even for interface methods; all pointers are
long and the L prefix is obsolete.

wchar_t [], char [] sz A zero-terminated string in the form of a character array on the stack. For
example, wchar_t szMessage[BUFFER_SIZE];

BSTR bstr An OLE Automation BSTR.

void A void. Use the "p" prefix for a pointer to void.

(*)() A function. Use the "p" prefix for a pointer to function.

For example,

HANDLE hMapFile = NULL;

DWORD dwError = NO_ERROR;

Hungarian Prefixes can be used to augment the type information – the prefix is used with the Hungarian tag.

Prefix Description

p A pointer (32bit or 64 bit depending on platform).

sp A ‘smart’ pointer, i.e. a class that has pointer-like semantics.

c A count. For example, cbBuffer means the byte count of a buffer. It is acceptable if "c"
is not followed by a tag.

m_ A member variable in a class.

s_ A static member variable in a class.

g_ A global variable.

I COM interface

For example,

UINT cch; // Count of characters

PWSTR psz; // String pointer, null terminated

wchar_t szString[] = L"foo";

3.3.4 UI Control Naming Conventions
UI controls may use the following prefixes and follow the resource ID formats. The primary purpose is to make
code more readable.

Control Type Control Handle
Name Format

MFC Control
Name Format

Resource ID
 (All capital, separate words with ‘_’)

Animation Control hXxxAnimate aniXxx IDC_ANIMATE_XXX

http://1code.codeplex.com/

Page 30

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Button hXxxButton btnXxx IDC_BUTTON_XXX

Check Box hXxxCheck chkXxx IDC_CHECK_XXX

ComboBox hXxxCombo cmbXxx IDC_COMBO_XXX

Date Time Picker hXxxDatePicker dtpXxx IDC_DATETIMEPICKER_XXX

Edit Control hXxxEdit tbXxx IDC_EDIT_XXX

Group Box hXxxGroup grpXxx IDC_STATIC_XXX

Horizontal Scroll Bar hXxxScroll hsbXxx IDC_SCROLLBAR_XXX

IP Address Control hXxxIpAddr ipXxx IDC_IPADDRESS_XXX

List Box hXxxList lstXxx IDC_LIST_XXX

List(View) Control hXxxList lvwXxx IDC_LIST_XXX

Menu hXxxMenu N/A IDM_XXX

Month Calendar Control hXxxCalendar mclXxx IDC_MONTHCALENDAR_XXX

Picture Box hXxxPicture pctXxx IDC_STATIC_XXX

Progress Control hXxxProgress prgXxx IDC_PROGRESS_XXX

Radio Box hXxxRadio radXxx IDC_RADIO_XXX

Rich Edit Control hXxxRichEdit rtfXxx IDC_RICHEDIT_XXX

Slider Control hXxxSlider sldXxx IDC_SLIDER_XXX

Spin Control hXxxSpin spnXxx IDC_SPIN_XXX

Static Text hXxxLabel lbXxx IDC_STATIC_XXX

SysLink Control hXxxLink lnkXxx IDC_SYSLINK_XXX

Tab Control hXxxTab tabXxx IDC_TAB_XXX

Tree(View) Control hXxxTree tvwXxx IDC_TREE_XXX

Vertical Scroll Bar hXxxScroll vsbXxx IDC_SCROLLBAR_XXX

3.4 Pointers
 You should always initialize pointers when you declare them and you should reinitialize them to NULL or
other invalid value after freeing them. This prevents the rest of the code from using an uninitialized pointer to
corrupt the process’s address space by accidentally reading/writing to an unknown location. For example:

Good:
BINARY_TREE *directoryTree = NULL;

DWORD *pdw = (DWORD *)LocalAlloc(LPTR, 512);

...

if (pdw != NULL)

{

 LocalFree(pdw);

 pdw = NULL;

}

...

http://1code.codeplex.com/

Page 31

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

if (directoryTree != NULL)

{

 // Free directoryTree with match to way it was allocated

 FreeBinaryTree(directoryTree);

 directoryTree = NULL;

}

 You should put a space between the '*' character(s) and the type when specifying a pointer type/variable,
but there should be no space between the '*' character(s) and the variable. Setting this rule is to be consistent
and uniform in code. Here are some examples:

Good:
HRESULT GetInterface(IStdInterface **ppSI);

INFO *GetInfo(DWORD *pdwCount);

DWORD *pdw = (DWORD *)pv;

IUnknown *pUknwn = static_cast<IUnknown *>(*ppv);

Bad:
HRESULT GetInterface(IStdInterface** ppSI);

INFO* GetInfo(DWORD * pdwCount);

DWORD* pdw = (DWORD*)pv;

IUnknown* pUknwn = static_cast<IUnknown*>(*ppv);

3.5 Constants
 Do define named constants as ‘const’ values, instead of “#define” values. For example:

Good:
 const int BLACK = 3;

Bad:
#define BLACK 3

When you use const values, the compiler will enforce type checking and add the constants to the symbol table,
which makes debugging easier. In contrast, the preprocessor does neither.

 You should define groups of related constants using enum. This allows the group of constants to share a
unique type and improves function interfaces. For example:

Good:
enum DayOfWeek {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

enum Color {Black, Blue, White, Red, Purple};

// Note the strong type parameter checking; calling code can’t reverse them.

BOOL ColorizeCalendar (DayOfWeek today, Color todaysColor);

Bad:

http://1code.codeplex.com/

Page 32

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

const int Sunday = 0;

const int Monday = 1;

const int Black = 0;

const int Blue = 1;

// Note the weak type parameter checking; calling code can reverse them.

BOOL ColorizeCalendar (int today, int todaysColor);

 You should use ‘const’ when passing and returning parameters where appropriate. By applying ‘const’ the
intent of the code is clearly spelled out, and the compiler can provide an added level of verification that the
code isn’t modifying values that it shouldn’t be.

Const usage Meaning Description

const int *x; Pointer to a const int Value pointed to by x can’t change

int * const x; Const pointer to an int x cannot point to a different location.

const int *const x; Const pointer to a const int Both the pointer and the value pointed to cannot
change.

3.6 Casting
 You should use C++ casts. The C++ casts are more explicit, give finer-grain control and express the intent of
the code more clearly. There are three types of C++ casts:

1. static_cast handles related types such as one pointer to another in the same hierarchy. This is a safe cast.
The compiler will ensure that the type is actually what you are casting to. This is often needed to
disambiguate the type of an item when it is multiply derived.

2. reinterpret_cast handles conversion between unrelated types. Warning: Do not cast from a DWORD to a
pointer or visa-versa. It will not compile under 64 bits. Do comment your reinterpret_cast<> usage; this is
needed to relieve the concern that future readers will have when they see the cast.

3. const_cast is used to cast away the ‘const’ness of an object.

The syntax for all three is similar:

DerivedClass *pDerived = HelperFunction();

BaseClass *pBase = static_cast<BaseClass *>(pDerived);

 You should not use ‘const_cast’ unless absolutely necessary. Having to use ‘const_cast’ typically means that
an API is not using ‘const’ appropriately. Note; The Win32 API doesn’t always use ‘const’ for passing parameters
and it may be necessary to use const_cast when using the Win32 API.

3.7 Sizeof
 Do use sizeof(var) instead of sizeof(TYPE) whenever possible. To be explicit about the size value being used
whenever possible write sizeof(var) instead of sizeof(TYPE_OF_VAR). Do not code the known size or type of the
variable. Do reference the variable name instead of the variable type in sizeof:

Good:

http://1code.codeplex.com/

Page 33

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

MY_STRUCT s;

ZeroMemory(&s, sizeof(s));

Bad:
MY_STRUCT s;

ZeroMemory(&s, sizeof(MY_STRUCT));

 Do not use sizeof for arrays to get the element number. Use ARRAYSIZE.

3.8 Strings
 Do write explicitly UNICODE code because it enables easier globalization. Don’t use TCHAR or ANSI code
because it eliminates half of all testing and eliminates string bugs. This means:

Use the wide char types including wchar_t, PWSTR, PCWSTR instead of the TCHAR versions.

Good:
HRESULT Function(PCWSTR)

Bad:
HRESULT Function(PCTSTR)

Variable names should not indicate “W” in the name.

Good:
Function(PCWSTR psz)

Bad:
Function(PCWSTR pwsz)

Don’t use the TEXT macro, instead use the L prefix for creating Unicode string constants L”string value”.

Good:
L"foo"

Bad:
TEXT("foo")

Prefer wchart_t to WCHAR because it is the native C++ type.

Good:
L"foo"

wchar_t szMessage[260];

Bad:
TEXT("foo")

WCHAR szMessage[260];

http://1code.codeplex.com/

Page 34

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Never explicitly use the A/W versions of the APIs. This is bad style because the names of the APIs actually are the
base name without A/W. And, it makes code hard to port when you do need to switch between ANSI/Unicode.

Good:
CreateWindow(...);

Bad:
CreateWindowW(...);

 You should use fixed size stack buffers for string instead of allocating when possible. There are several
benefits to using a fixed sized stack buffer rather than allocating a buffer:

• Fewer error states, no need to test for allocation failure and write code to handle this.
• No opportunity to leak, the stack is trivially cleaned up for you.
• Better performance, no transient heap usage.

There are cases where a stack buffer should be avoided

• When the data size can be arbitrary and thus in some cases it will not fit.

Note that UI strings are limited by UA guidelines and the size of the screen, so you can usually pick a fixed
upper bound for the size. It is best to double the size you think the string will be to accommodate future
edits and growth in other languages (the rule there is 30% for language growth).

• “Large data”; rule of thumb is several times larger than MAX_PATH (260) or more than one MAX_URL
(2048) should not be on the stack.

• Recursive functions.

So for small size data where it is reasonable to pick a max size it is best to put this data on the stack.

3.9 Arrays

3.9.1 Array Size
 Do use ARRAYSIZE() as the preferred way to get the size of an array. ARRAYSIZE() is declared in a way that
produces an error if it is used on a non-array type, resulting in error C2784. For anonymous types you need to
use the less safe _ARRAYSIZE() macro. ARRAYSIZE() should be used instead of RTL_NUMBER_OF(), _countof(),
NUMBER_OF(), etc.

 Do derive the array size from the variable rather than specifying the size in your code.

Good:
ITEM rgItems[MAX_ITEMS];

for (int i = 0; i < ARRAYSIZE(rgItems); i++) // use ARRAYSIZE()

{

 rgItems[i] = fn(x);

 cb = sizeof(rgItems[i]); // specify the var, not its type

}

http://1code.codeplex.com/

Page 35

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Bad:
ITEM rgItems[MAX_ITEMS];

// WRONG, use ARRAYSIZE(), no need for MAX_ITEMS typically

for (int i = 0; i < MAX_ITEMS; i++)

{

 rgItems[i] = fn(x);

 cb = sizeof(ITEM); // WRONG, use var instead of its type

}

3.9.2 Array Initialization
 Do use "= {}" to zero array memory. The compiler optimizer does better with "= {}" than "= {0}" and
ZeroMemory, so "= {}" is preferred.

3.10 Macros
 You should not use macros unless they are absolutely necessary. Most functionality that is typically achieved
through macros can be implemented other C++ constructs (using constants, enums, inline functions, or
templates) which will yield clearer, safer, and more understandable code.

Good:
__inline PCWSTR PCWSTRFromBSTR(__in BSTR bstr)

{

 return bstr ? bstr : L"";

}

Bad:
#define PCWSTRFromBSTR(bstr) (bstr ? bstr : L"")

 Do not use “#define” values for constant values. See the section on “Constants and ‘const’”.

 Do not use the following existing macros: SIZEOF(), IID_PPV_ARG() (use IID_PPV_ARGS() instead).

3.11 Functions

3.11.1 Validating Parameters
 Do validate parameters to functions that will be used by the public. If the parameters are not valid, set the
last error ERROR_INVALID_PARAMETER or return the HRESULT E_INVALIDARG.

3.11.2 Reference Parameters
 Do not use ref parameters for output because it makes it hard to determine whether a variable is modified
(an output) at the call site. Use pointers instead. For example, consider:

Function()

{

 int n = 3;

http://1code.codeplex.com/

Page 36

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Mystery(n);

 ASSERT(n == 3);

}

Is the assertion valid? If you missed the declaration of the function Mystery, you might think the answer is, "Of
course it is. The value of n is never modified". However, if the function Mystery were declared as:

void Mystery(int &n);

Then the answer is, "Maybe, maybe not". If the Mystery function intends to modify its argument, it should be
rewritten as:

void Mystery(int *pn);

Function()

{

 int n = 3;

 Mystery(&n);

}

It is now clearer that the Mystery function can change its argument.

If you choose to pass an object by reference (for example, because it is a structure), either pass it explicitly by
pointer (if it is an output parameter), or use a const reference (if it is an input parameter). The const attribute
indicates that the object is not modified by the function. This preserves the rule that "a parameter passed
without a & is not modified by the function." We have defined macros for common cases of object types, like
REFCLSID, REFIID and REFPROPERTYKEY.

3.11.3 Unreferenced Parameters
When implementing methods in an interface or standard export it is common for some of the parameters to not
be referenced. The compiler detects unused parameters and will produce a warning that some components
treat as an error. To avoid this comment out the unused parameter using the /* param_name */ syntax, don’t
use the UNREFERENCED_PARAMETER() macro since that is 1) less concise, 2) does not ensure that the
parameter is in fact unreferenced.

Good:
LRESULT WndProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM /* lParam */)

Bad:
LRESULT WndProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 UNREFERENCED_PARAMETER(lParam);

 ...

}

http://1code.codeplex.com/

Page 37

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

3.11.4 Output String Parameters
A common way to return a string from a function is to have the caller specify the address where the value
should be stored and the length of that buffer as a count of characters. This is the “pszBuf/cchBuf” pattern. In
the method, you need to explicitly test the buffer size > 0 first.

In COM applications, you can return __out string parameters as strings allocated by CoTaskMemAlloc /
SysAllocString. This avoids string size limitations in the code. The caller is responsible for calling CoTaskMemFree
/ SysFreeString.

3.11.5 Return Values
 Do test the return of a function, not the out parameters, in the caller. Some functions communicate the
success or failed state in multiple ways; for example in COM methods it is visible in the HRESULT and the out
parameter. For example both of the following are correct.

Good:
IShellItemImageFactory *psiif;

if (SUCCEEDED(psi->QueryInterface(IID_PPV_ARGS(&psiif))))

{

 // Use psiff

 psiif->Release();

}

Bad:
IShellItemImageFactory *psiif;

psi->QueryInterface(IID_PPV_ARGS(&psiif));

if (psiif)

{

 // Use psiff

 psiif->Release();

}

The reasons are:

• The HRESULT is the more prominent result from the function and is the most appropriate to test.
• Usually the value of the HRESULT caries important information that needs to be propagated, this reduces

the chance of mapping or treating all failures to E_FAIL.
• Testing the HRESULT makes this code consistent with cases where the out params are not zeroed on

failure (many win32 APIs).
• Testing the HRESULT enables putting the call and the test on the same line.
• Testing the HRESULT is more efficient in terms of code generation.

http://1code.codeplex.com/

Page 38

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

3.12 Structures

3.12.1 Typedef Structures
 You should use typedef when you need to create a named type. If all you want is a single struct variable, you
don’t need the typedef. The typedef tag should be the same name as the type, “typedef struct FOO { int x; }
FOO;” if it is needed (forward use and self referencing typedefs need the struct tag). Structure names are all
upper case. Separate words with ‘_’. For example,

// The format of the bytes in the data stream....

typedef struct FORM_STREAM_HEADER

{

 int cbTotalSize;

 int cbVarDataOffset;

 USHORT usVersion;

} FORM_STREAM_HEADER;

3.12.2 Structure Initialization
 Do use "= {}" to zero structure memory.

PROPVARIANT pv = {};

When a structure has a byte size field as the first member, you could use the following shortcut to initialize the
size field and zero initialize the other fields:

SHELLEXECUTEINFO sei = { sizeof(sei) };

sei.lpFile = ...

3.12.3 Structures vs. Classes

 Do use a structure to define a data aggregate that does not contain functions. Use a class if the data
structure includes member functions. In C++, a struct can have member functions and operators and everything
else that a class can have. In fact, the only difference between a class and a struct is that all members default to
public access in a struct but private access in a class. To match the normal intuition, we use a class if and only if
there are member functions included.

3.13 Classes

3.13.1 Data Members
 Do not declare public data members. Use inline accessor functions for performance.

 Do prefer initialization to assignment in constructors. For example, using initialization:

Good:
class Example

{

http://1code.codeplex.com/

Page 39

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

public:

 Example(const int length, const wchar_t *description) :

 m_length(length),

 m_description(description),

 m_accuracy(0.0)

 {

 }

private:

 int m_length;

 CString m_description;

 float m_accuracy;

};

Bad:
class Example

{

public:

 Example(int length, const wchar_t *description)

 {

 m_length = length;

 m_description = description;

 m_accuracy = 0.0;

 }

private:

 int m_length;

 CString m_description;

 float m_accuracy;

};

 Do initialize member variables in the same order that they were defined in the class declaration. The order of
initialization is the order the members are declared in the class definition, not the order of the initialization list.
If both orders are consistent then the code will reflect what will be generated by the compiler. As an example,
consider the “CodeExample” class.

Bad:
class CodeExample

{

public:

 explicit CodeExample(int size);

 ~CodeExample();

private:

 wchar_t *m_buffer;

 int m_size;

};

http://1code.codeplex.com/

Page 40

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

CodeExample::CodeExample(int size) :

 m_size(size),

 m_buffer((wchar_t*)operator new[](m_size))

{

}

CodeExample::~CodeExample()

{

 delete [] m_buffer;

}

int wmain(int argc, wchar_t *argv[])

{

 CodeExample example(23);

 return 0;

}

The CodeExample class declaration defines m_buffer and then m_size, so it will initialize m_buffer and then
m_size. The constructor is written with a different initialization order than the declaration order; it is written so
that it appears that m_size is valid when m_buffer is initialized, and this is not the case. If the declaration order
is changed then the code will work as expected.

3.13.2 Constructors

 Do minimal work in the constructor. Constructors should not do much work other than to capture the
constructor parameters and set main data members. The cost of any other processing should be delayed until
required.

 You should be explicit in the copy semantics for a class. Copy constructors and assignment operators are
special methods – if you don’t provide an implementation, then the compiler will provide a default
implementation for you. If copying is not supported by the class semantics, explicitly disallow it by providing
private, unimplemented copy constructor and assignment operators. For example:

class Example

{

private:

 Example(const Example&);

 Example& operator=(const Example&);

};

You should not provide implementations of these methods - this ensures that if they are ever accidentally used,
a compiler error will be generated to alert you.

 Do define copy constructors as taking a ‘const’ reference type. For example, for a class T, the copy
constructor should be defined as:

T(const T& other)

http://1code.codeplex.com/

Page 41

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

{

 ...

}

If the constructor was defined as “T(T& other)” or even “T(T& other, int value = 0)”, they would still be copy
constructors. By standardizing on “const T&”, the constructor will work for both const and non-const values,
with the added safety that const-ness brings.

 Do define all single parameter constructors, by default, with the ‘explicit’ keyword, so that they are not
conversion constructors. For example,

class CodeExample

{

 int m_value;

public:

 explicit CodeExample(int value) :

 m_value(value)

 {

 }

};

 Do not provide conversion constructors unless the semantics of the class justify them.

3.13.3 Destructors

 Do use a destructor to centralize the resource cleanup of a class that is freed via delete. If resources are freed
before destruction, make sure the fields are reset (e.g. set pointers to NULL) so that a destructor will not try to
free them again.

 Do declare the destructor as "virtual" for classes that contain at least one other virtual function. If the class
does not contain any virtual functions, then do not declare the destructor as virtual.

Here is the rationale behind the rule of using a virtual destructor if and only if the class has a virtual function.
Assume class B derives from class A, and you have a pointer p which is of type A. p can actually hold an object of
type A or B. If A and B have a virtual function F, then p->F() will call A::F if p points to an A object, or B::F if it
points to a B object. You obviously need the matching destructor ~A or ~B, so you need the destructor to be
virtual. But what if F is not virtual? Then, regardless of what p points to, you end up calling A::F. If p points to a
B, then you’re treating the B as though it were an A. Therefore, you definitely don’t want to call B::F because
the member functions are updating the state of an A, not the state of a B. The B destructor may fail if it touches
state that only applies to a B. It’s this latter case where a virtual destructor creates the problem. Abusing virtual
destructors is the source of a lot of C++ bugs.

3.13.4 Operators
 Do not overload operator&&, operator|| or operator,. Unlike the built-in &&, || or , operators the
overloaded versions cannot be short-circuited, so the resulting behavior of using these operators typically isn’t
what was expected.

 You should not overload operators unless the semantics of the class justify it.

http://1code.codeplex.com/
http://msdn.microsoft.com/en-us/library/s2ff0fz8.aspx

Page 42

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Do not change the semantics of the operators if you choose to overload them. For example, do not re-
purpose the ‘+’ operator for performing subtraction.

 You should not implement conversion operators unless the semantics of the class justify them.

3.13.5 Function Overloading
 Do not arbitrarily varying parameter names in overloads. If a parameter in one overload represents the same
input as a parameter in another overload, the parameters should have the same name. Parameters with the
same name should appear in the same position in all overloads.

 Do make only the longest overload virtual (if extensibility is required). Shorter overloads should simply call
through to a longer overload.

3.13.6 Virtual Functions
 Do use virtual functions to implement polymorphism

 Do not use virtual methods unless you really should because virtual functions have overhead of calling
through the vtable.

 You should use the ‘override’ keyword when overriding a virtual function (Note: this is a Microsoft specific
extension to C++). The override keyword will cause the compiler to ensure that the method prototype matches a
virtual function in a base class. If a change is made to the prototype of a virtual function on a base class, then the
compiler will generate errors for derived classes that need to be fixed.

For example:

class Example

{

protected:

 Example()

 {

 }

public:

 virtual ~Example()

 {

 }

 virtual int MeasureAccuracy();

private:

 Example(const Example&);

 Example& operator=(const Example&);

};

class ConcreteExample : public Example

http://1code.codeplex.com/
http://msdn.microsoft.com/en-us/library/0t2cwh7y.aspx

Page 43

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

{

public:

 ConcreteExample()

 {

 }

 ~ConcreteExample ()

 {

 }

 int MeasureAccuracy() override;

};

3.13.7 Abstract Classes
An abstract class provides a polymorphic base class and requires a derived class to provide implementation for
virtual methods.

 You can use the 'abstract' keyword to identify an abstract class (Note: this is a Microsoft specific extension to
C++).

 Do provide a protected constructor.

 Do identify abstract methods by making them pure virtual.

 Do provide a public, virtual destructor if you allow deletion via a pointer to the abstract class or a protected,
non-virtual destructor to disallow deletion via a pointer to the abstract class.

 Do explicitly provide protected copy constructor and assignment operators or private unimplemented copy
constructor and assignment operators – this will cause a compilation error if a user accidentally uses an abstract
base class that results in pass-by-value behavior.

An example of an abstract class:

class Example abstract

{

protected:

 Example()

 {

 }

public:

 virtual ~Example()

 {

 }

 virtual int MeasureAccuracy() = 0;

http://1code.codeplex.com/

Page 44

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

private:

 Example(const Example&);

 Example& operator=(const Example&);

};

3.14 COM

3.14.1 COM Interfaces
 Do use IFACEMTHODIMP and IFACEMTHODIMP_ for method declarations in COM interfaces. These macros
have replaced the usage of STDMETHODIMP and STDMETHOD as they add the __override SAL annotation.

For example:

class CNetDataObj : public IDataObject

{

public:

 // IDataObject

 IFACEMETHODIMP GetData(FORMATETC *pFmtEtc, STGMEDIUM *pmedium)

...

IFACEMETHODIMP CNetDataObj::GetData(FORMATETC *pFmtEtc, STGMEDIUM *pmedium)

{

 ...

}

 Do order interface methods in your class definition in the same order they are declared in their definition.
This is the order for IUnknown: QueryInterface()/AddRef()/Release().

3.14.2 COM Interface ID
__uuidof() is a compiler supported feature that produces a single GUID value that might be associated with a
type. That type might be an interface pointer, class. The GUID is associated with that type using
__declspec(uuidof(“<guid value”)).
Avoid using either when you can, use IID_PPV_ARGS() or the templatized QueryInterface()

Use __uuidof(var) when you need the IID of an interface pointer rather than hard coding the knowledge of the
IID of that variable. This is similar to the use of sizeof(var) vs sizeof(TYPE_OF_VAR). Note you can type “sizeof
var”, no parentheses needed. For example,

CoMarshalInterThreadInterfaceInStream(__uuidof(psia), psia, &pstm);

When faced with using IID_ISomeInterface vs __uuidof(ISomeInterface) prefer the former since it is more
concise. Same applies to CLSID_SomecoClass vs __uuidof(SomeCoClass). One exception to this rule is explicitly
referring to the IID or CLSID requires linking to it via a .lib. If none is supplied then the __uuidof() is preferred to
having to define that value in your code.

http://1code.codeplex.com/

Page 45

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

3.14.3 COM Classes
 Do declare private destructors (or protected if you expect people to derive from you) for classes that
implement COM objects that are allocated on the heap. This avoids clients mistakenly calling “delete pObj”,
something that should only happen when the ref count of the object goes to zero.

 Do initialize the m_cRef to 1 on construction for classes that implement COM object. (Note: ATL uses a
different pattern of ref initiated to 0 expecting the use of smart pointers whose assignment increments the
value to 1). This makes it impossible to be in the state where the class exists but cannot be released.

 Do return an HRESULT from every COM method (except AddRef and Release).

3.15 Allocations
 Do ensure that all allocated memory is freed using the same mechanisms. Objects allocated using ‘new’
should be freed with ‘delete’. For example:

Engine *pEngine = new Engine();

pEngine->Process();

delete pEngine;

Allocations made using ‘vector new’ should be freed using ‘vector delete’. For example:

wchar_t *pszBuffer = new wchar_t[MAX_PATH];

SomeMethod(pszBuffer);

delete [] pszBuffer;

 Do understand the allocations within your code base to ensure that they are freed correctly.

3.15.1 Smart Pointers
 You should use RAII (Resource Allocation Is Initialization) constructs to help track allocations – using smart
pointers, for example. The previous two examples written using ATL’s ‘smart pointer’ classes would be:

{

 CAutoPtr<Engine> spEngine(new Engine());

 spEngine->Process();

}

{

 CAutoVectorPtr<wchar_t> spBuffer();

 spBuffer.Allocate(MAX_PATH);

 SomeMethod(spBuffer);

}

 Do not enable ATL in your project just because you want to use CAutoPtr and CAutoVectorPtr.

http://1code.codeplex.com/

Page 46

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

3.16 Errors and Exceptions
 Do prefer error code return values to exception handling in most cases, for simplicity. Always use error codes
from DLL-exported APIs or methods.

3.16.1 Errors

 Do check return values for function calls and handle errors appropriately. When detecting an error, print the
error message as early as possible in console applications, and handle the error. For example,

// Function returns HRESULT.
IShellLibrary* pShellLib = NULL;

HRESULT hr = SHCreateLibrary(IID_PPV_ARGS(&pShellLib));

if (FAILED(hr))

{

 wprintf(L"SHCreateLibrary failed w/err 0x%08lx\n", hr);

 goto Cleanup;

}

// Function returns TRUE/FALSE and sets the Win32 last error.

DWORD dwError = ERROR_SUCCESS;

HANDLE hToken = NULL;

if (!OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY | TOKEN_DUPLICATE,

 &hToken))

{

 dwError = GetLastError();

 wprintf(L"OpenProcessToken failed w/err 0x%08lx\n", dwError);

 goto Cleanup;

}

3.16.2 Exceptions
Exceptions are a feature of C++ that requires a good understanding before they can be used appropriately.
Before consuming code that uses native C++ exceptions, make sure that you understand the implications of
consuming that code.

Native C++ exceptions are a powerful feature of the language, and can reduce the complexity of code, and
reduce the amount of code that is written and maintained.

 Do throw exceptions by value and catch exceptions by reference. For example,

void ProcessItem(const Item& item)

{

 try

 {

 if (/* some test failed */)

 {

 throw _com_error(E_FAIL);

 }

http://1code.codeplex.com/

Page 47

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 }

 catch(_com_error& comError)

 {

 // Process comError

 //

 }

}

 When re-throwing exceptions do re-throw exceptions using “throw;” instead of “throw <caught exception>”.
For example,

Good:
void ProcessItem(const Item& item)

{

 try

 {

 Item->Process();

 }

 catch(ItemException& itemException)

 {

 wcout << L"An error occurred."

 throw;

 }

}

Bad:
void ProcessItem(const Item& item)

{

 try

 {

 Item->Process();

 }

 catch(ItemException& itemException)

 {

 wcout << L"An error occurred."

 throw itemException;

 }

}

 Do not allow exceptions to be thrown out of destructors.

 Do not use “catch(…)”.General exceptions should not be caught. You should catch a more specific exception,
or re-throw the general exception as the last statement in the catch block. There are cases when swallowing
errors in applications is acceptable, but such cases are rare. Only catch the specific exceptions that the function
knows how to handle. All others must be passed unhandled.

http://1code.codeplex.com/

Page 48

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Do not use exceptions for control flow. Except for system failures and operations with potential race
conditions, you should write code that does not throw exceptions. For example, you can check preconditions
before calling a method that may fail and throw exceptions. For example,

if (IsWritable(list))

{

 WriteList(list);

}

 Do make sure that you understand the exceptions that may be thrown from code that you take a dependency
on, and ensure that the exceptions aren’t unintentionally propagated to the consumers of your API. For
example, STL and ATL can throw native C++ exceptions in certain scenarios – understand those scenarios and
ensure that the appropriate exceptions are handled in your code to prevent propagation out.

3.17 Resource Cleanup
Dynamically allocated memory / resources must be appropriately cleaned up before you exit from a function to
avoid memory / resource leaks. Proper resource cleanup solution is particularly important when an error occurs
in the middle of the function. Here are five commonly seen patterns of code to clean up resources in a function.

Pattern Example Analysis

goto
Cleanup

 HANDLE hToken = NULL;
 PVOID pMem = NULL;

 if (!OpenProcessToken(GetCurrentProcess(),
 TOKEN_QUERY, &hToken))
 {
 ReportError(GetLastError());
 goto Cleanup;
 }

 pMem = LocalAlloc(LPTR, 10);
 if (pMem == NULL)
 {
 ReportError(GetLastError());
 goto Cleanup;
 }

 ...
Cleanup:
 if (hToken)
 {
 CloseHandle(hToken);
 hToken = NULL;
 }
 if (pMem)
 {
 LocalFree(pMem);
 pMem = NULL;
 }

If you are absolutely sure that the
code does not throw an exception,
"goto Cleanup" should be the best
choice. It is faster than
"__try/__finally", is easier to
implement than "Early return with
RAII wrapper", and is portal to C.

__try /
__finally

HANDLE hToken = NULL;
PVOID pMem = NULL;

__try
{

__try/__finally is not portable to
other systems, hamstrings the
optimizer, and is surprisingly more

http://1code.codeplex.com/

Page 49

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 if (!OpenProcessToken(GetCurrentProcess(),
 TOKEN_QUERY, &hToken))
 {

ReportError(GetLastError());
 __leave;
 }

 pMem = LocalAlloc(LPTR, 10);
 if (pMem == NULL)
 {
 ReportError(GetLastError());
 __leave;
 }

 ...
}
__finally
{
 if (hToken)
 {
 CloseHandle(hToken);
 hToken = NULL;
 }
 if (pMem)
 {

LocalFree(pMem);
 pMem = NULL;
 }
}

expensive than goto and early return.
__try / __finally inhibits a large set of
optimizations because the compiler
must assume that something bad can
happen at any time (in the middle of
an expression, or inside a function
you called). In contrast, "goto" lets
the compiler assume that bad things
happen only when you do a "goto".

Nested if HANDLE hToken = NULL;
PVOID pMem = NULL;

if (OpenProcessToken(GetCurrentProcess(),
 TOKEN_QUERY, &hToken))
{
 pMem = LocalAlloc(LPTR, 10);
 if (pMem)
 {
 ...

 LocalFree(pMem);
 pMem = NULL;
 }
 else
 {
 ReportError(GetLastError());
 }

 CloseHandle(hToken);
 hToken = NULL;
}
else
{
 ReportError(GetLastError());
}

Nested if is often the worst choice.
You quickly run out of horizontal
space. It is harder to read, harder to
maintain.

Early return
with
repeating
cleanup

DWORD dwError = ERROR_SUCCESS;
HANDLE hToken = NULL;
PVOID pMem = NULL;

if (!OpenProcessToken(GetCurrentProcess(),
 TOKEN_QUERY | TOKEN_DUPLICATE, &hToken))
{

Early return is bad in C because you
end up repeating the cleanup code. If
the function has no cleanup or it is an
extremely small function, then early
return can be ok.

http://1code.codeplex.com/

Page 50

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 ReportError(GetLastError());
 return FALSE;
}

pMem = LocalAlloc(LPTR, 10);
if (pMem == NULL)
{
 ReportError(GetLastError());
 CloseHandle(hToken);
 hToken = NULL;
 return FALSE;
}

CloseHandle(hToken);
LocalFree(pMem);
return TRUE;

Early return
with RAII
wrapper

namespace WinRAII
{
 class AutoFreeObjHandle
 {
 public:
 explicit AutoFreeObjHandle(HANDLE h):
 m_hObj(h) { ; }
 ~AutoFreeObjHandle() { Close(); }
 void Close(void)
 {
 if (m_hObj)
 {
 CloseHandle(m_hObj);
 m_jObj = NULL;
 }
 }
 HANDLE Get(void) const

{ return (m_hObj); }
void Set(HANDLE h) { m_hObj = h; }

 private:
HANDLE m_hObj;

 AutoFreeObjHandle(void);
AutoFreeObjHandle(
 const AutoFreeObjHandle &);
AutoFreeObjHandle & operator =

 (const AutoFreeObjHandle &);
 }
}

WinRAII::AutoFreeObjHandle afToken(NULL);
if (!OpenThreadToken (GetCurrentThread(),
 TOKEN_QUERY, TRUE, &hToken))
{
 ReportError(GetLastError());
 return FALSE;
}

If cleanup is in destructors then early
return is ok. Because C++ exception
handling doesn’t have a finally or a
C# using, you need an RAII-style
wrapper class for each resource type.
The compiler generates code to call
the destructors of all stack-based
objects (the wrappers) when the
function exits. This makes them
equivalent to a __finally if you throw.

3.18 Control Flow

3.18.1 Early Returns
 You should not early return in most functions. Early returns are acceptable in some situations, but they
should be avoided. Ideally functions will have a single return point at the bottom that all execution leads to.

http://1code.codeplex.com/

Page 51

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Acceptable situations for early returns are:
• Parameter validation done at the very beginning of a function
• Extremely small functions (like assessors to member variable state)

3.18.2 Goto

 Do not use ‘goto’ statements in place of structured control flow in attempts to “optimize” runtime
performance. Doing so leads to code which is very hard to understand, debug, and verify correct.

 You can use goto in a structured manner by always jumping forward and by implementing a consist set of
jumps related to a single purpose such as jumping out of a series of resource allocations into cleanup code when
one resource cannot be allocated. Such use of goto can reduce deep levels of nesting and make error handling
much easier to see and verify. For example:

BOOL IsElevatedAdministrator(HANDLE hInputToken)

{

 BOOL fIsAdmin = FALSE;

 HANDLE hTokenToCheck = NULL;

 // If caller supplies a token, duplicate it to an impersonation token

 // because CheckTokenMembership requires an impersonation token.

 if (hInputToken)

 {

 if (!DuplicateToken(hInputToken, SecurityIdentification, &hTokenToCheck))

 {

 goto CLEANUP;

 }

 }

 DWORD sidLen = SECURITY_MAX_SID_SIZE;

 BYTE localAdminsGroupSid[SECURITY_MAX_SID_SIZE];

 if (!CreateWellKnownSid(WinBuiltinAdministratorsSid, NULL,

 localAdminsGroupSid, &sidLen))

 {

 goto CLEANUP;

 }

 // Now, determmine if the user is an admin

 if (CheckTokenMembership(hTokenToCheck, localAdminsGroupSid, &fIsAdmin))

 {

 // lastErr = ERROR_SUCCESS;

 }

CLEANUP:

 // Close the impersonation token only if we opened it.

 if (hTokenToCheck)

http://1code.codeplex.com/

Page 52

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 {

 CloseHandle(hTokenToCheck);

 hTokenToCheck = NULL;

 }

 return (fIsAdmin);

}

Logically, this code is structured as four chunks (shaded below). The first two chunks try to allocate resources; if
they succeed, control falls through to the next chunk. If one fails, control goes to the cleanup code. The third
chunk is the final logic which determines the final result of the function, then falls through to the cleanup code.
This is a structured use of goto because all gotos go forward and each one is used in a consistent way for a single
purpose. The resulting code is shorter, easier to read, and easier to verify than the nested equivalent. This is a
good use of goto.

BOOL IsElevatedAdministrator(HANDLE hInputToken)

{

 BOOL fIsAdmin = FALSE;

 HANDLE hTokenToCheck = NULL;

 // If caller supplies a token, duplicate it to an impersonation token

 // because CheckTokenMembership requires an impersonation token.

 if (hInputToken)

 {

 if (!DuplicateToken(hInputToken, SecurityIdentification, &hTokenToCheck))

 {

 goto CLEANUP;

 }

 }

 DWORD sidLen = SECURITY_MAX_SID_SIZE;

 BYTE localAdminsGroupSid[SECURITY_MAX_SID_SIZE];

 if (!CreateWellKnownSid(WinBuiltinAdministratorsSid, NULL,

 localAdminsGroupSid, &sidLen))

 {

 goto CLEANUP;

 }

 // Now, determmine if the user is an admin

 if (CheckTokenMembership(hTokenToCheck, localAdminsGroupSid, &fIsAdmin))

 {

 // lastErr = ERROR_SUCCESS;

 }

CLEANUP:

 // Close the impersonation token only if we opened it.

 if (hTokenToCheck)

http://1code.codeplex.com/

Page 53

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 {

 CloseHandle(hTokenToCheck);

 hTokenToCheck = NULL;

 }

 return (fIsAdmin);

}

http://1code.codeplex.com/

Page 54

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

4 .NET Coding Standards

These coding standards can be applied to C# and VB.NET.

4.1 Design Guidelines for Developing Class Libraries
The Design Guidelines for Developing Class Libraries document on MSDN is a fairly thorough discussion of how
to write managed code. The information in this section highlights some important standards and lists the All-In-
One Code Framework code samples’ exceptions to the guidelines. Therefore, you had better read the two
documents side by side.

4.2 Files and Structure
 Do not have more than one public type in a source file, unless they differ only in the number of generic
parameters or one is nested in the other. Multiple internal types in one file are allowed.

 Do name the source file with the name of the public type it contains. For example, MainForm class should be
in MainForm.cs file and List<T> class should be in List.cs file.

4.3 Assembly Properties
The assembly should contain the appropriate property values describing its name, copyright, and so on.

Standard Example

Set Copyright to Copyright © Microsoft
Corporation 2010

[assembly: AssemblyCopyright("Copyright © Microsoft
Corporation 2010")]

Set AssemblyCompany to Microsoft
Corporation

[assembly: AssemblyCompany("Microsoft
Corporation")]

Set both AssemblyTitle and AssemblyProduct
to the current sample name

[assembly: AssemblyTitle("CSNamedPipeClient")]
[assembly: AssemblyProduct("CSNamedPipeClient")]

4.4 Naming Convensions

4.4.1 General Naming Conventions
 Do use meaning names for various types, functions, variables, constructs and types.

 You should not use of shortenings or contractions as parts of identifier names. For example, use
“GetWindow” rather than “GetWin”. For functions of common types, thread procs, window procedures, dialog
procedures use the common suffixes for these “ThreadProc”, “DialogProc”, “WndProc”.

 Do not use underscores, hyphens, or any other non-alphanumeric characters.

4.4.2 Capitalization Naming Rules for Identifiers

The following table describes the capitalization and naming rules for different types of identifiers.

http://1code.codeplex.com/
http://msdn.microsoft.com/en-us/library/ms229042.aspx

Page 55

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Identifier Casing Naming Structure Example

Class,
Structure

PascalCasing Noun public class ComplexNumber
{...}
public struct ComplextStruct
{...}

Namespace PascalCasing Noun
 Do not use the same name for a
namespace and a type in that
namespace.

namespace
Microsoft.Sample.Windows7

Enumeration PascalCasing Noun
 Do name flag enums with plural
nouns or noun phrases and simple
enums with singular nouns or noun
phrases.

[Flags]
public enum ConsoleModifiers
{ Alt, Control }

Method PascalCasing Verb or Verb phrase public void Print() {...}
public void ProcessItem()
{...}

Public
Property

PascalCasing Noun or Adjective
 Do name collection proprieties
with a plural phrase describing the
items in the collection, as opposed to
a singular phrase followed by “List”
or “Collection”.
 Do name Boolean proprieties with
an affirmative phrase (CanSeek
instead of CantSeek). Optionally, you
can also prefix Boolean properties
with “Is,” “Can,” or “Has” but only
where it adds value.

public string CustomerName
public ItemCollection Items
public bool CanRead

Non-public
Field

camelCasing
or
_camelCasing

Noun or Adjective.
 Do be consistent in a code sample
when you use the '_' prefix.

private string name;
private string _name;

Event PascalCasing Verb or Verb phrase
 Do give events names with a
concept of before and after, using
the present and past tense.
 Do not use “Before” or “After”
prefixes or postfixes to indicate pre
and post events.

// A close event that is
raised after the window is
closed.
public event WindowClosed

// A close event that is
raised before a window is
closed.
public event WindowClosing

Delegate PascalCasing  Do add the suffix ‘EventHandler’
to names of delegates that are used
in events.
 Do add the suffix ‘Callback’ to
names of delegates other than those
used as event handlers.

public delegate
WindowClosedEventHandler

http://1code.codeplex.com/

Page 56

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Do not add the suffix “Delegate”
to a delegate.

Interface PascalCasing
‘I’ prefix

Noun public interface IDictionary

Constant PascalCasing
for publicly
visible;
camelCasing
for internally
visible;
All capital
only for
abbreviation
of one or two
chars long.

Noun public const string
MessageText = "A";
private const string
messageText = "B";
public const double PI =
3.14159...;

Parameter,
Variable

camelCasing Noun int customerID;

Generic Type
Parameter

PascalCasing
‘T’ prefix

Noun
 Do name generic type parameters
with descriptive names, unless a
single-letter name is completely self-
explanatory and a descriptive name
would not add value.
 Do prefix descriptive type
parameter names with T.
 You should using T as the type
parameter name for types with one
single-letter type parameter.

T, TItem, TPolicy

Resource PascalCasing Noun
 Do provide descriptive rather than
short identifiers. Keep them concise
where possible, but do not sacrifice
readability for space.
 Do use only alphanumeric
characters and underscores in
naming resources.

ArgumentExceptionInvalidName

4.4.3 Hungarian Notation

 Do not use Hungarian notation (i.e., do not encode the type of a variable in its name) in .NET.

4.4.4 UI Control Naming Conventions
UI controls would use the following prefixes. The primary purpose was to make code more readable.

Control Type Prefix

http://1code.codeplex.com/

Page 57

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Button btn

CheckBox chk

CheckedListBox lst

ComboBox cmb

ContextMenu mnu

DataGrid dg

DateTimePicker dtp

Form suffix: XXXForm

GroupBox grp

ImageList iml

Label lb

ListBox lst

ListView lvw

Menu mnu

MenuItem mnu

NotificationIcon nfy

Panel pnl

PictureBox pct

ProgressBar prg

RadioButton rad

Splitter spl

StatusBar sts

TabControl tab

TabPage tab

TextBox tb

Timer tmr

TreeView tvw

For example, for the “File | Save” menu option, the “Save” MenuItem would be called “mnuFileSave”.

4.5 Constants
 Do use constant fields for constants that will never change. The compiler burns the values of const fields
directly into calling code. Therefore const values can never be changed without the risk of breaking compatibility.

public class Int32

{

 public const int MaxValue = 0x7fffffff;

http://1code.codeplex.com/

Page 58

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 public const int MinValue = unchecked((int)0x80000000);

}

Public Class Int32

 Public Const MaxValue As Integer = &H7FFFFFFF

 Public Const MinValue As Integer = &H80000000

End Class

 Do use public static (shared) readonly fields for predefined object instances. If there are predefined instances
of the type, declare them as public readonly static fields of the type itself. For example,

public class ShellFolder

{

 public static readonly ShellFolder ProgramData = new ShellFolder("ProgramData");

 public static readonly ShellFolder ProgramFiles = new ShellFolder("ProgramData");

 ...

}

Public Class ShellFolder

 Public Shared ReadOnly ProgramData As New ShellFolder("ProgramData")

 Public Shared ReadOnly ProgramFiles As New ShellFolder("ProgramFiles")

 ...

End Class

4.6 Strings
 Do not use the ‘+’ operator (or ‘&’ in VB.NET) to concatenate many strings. Instead, you should use
StringBuilder for concatenation. However, do use the ‘+’ operator (or ‘&’ in VB.NET) to concatenate small
numbers of strings.

Good:
StringBuilder sb = new StringBuilder();

for (int i = 0; i < 10; i++)

{

 sb.Append(i.ToString());

}

Bad:
string str = string.Empty;

for (int i = 0; i < 10; i++)

{

 str += i.ToString();

}

 Do use overloads that explicitly specify the string comparison rules for string operations. Typically, this
involves calling a method overload that has a parameter of type StringComparison.

http://1code.codeplex.com/
http://msdn.microsoft.com/en-us/library/system.stringcomparison.aspx

Page 59

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Do use StringComparison.Ordinal or StringComparison.OrdinalIgnoreCase for comparisons as your safe
default for culture-agnostic string matching, and for better performance.

 Do use string operations that are based on StringComparison.CurrentCulture when you display output to the
user.

 Do use the non-linguistic StringComparison.Ordinal or StringComparison.OrdinalIgnoreCase values instead of
string operations based on CultureInfo.InvariantCulture when the comparison is linguistically irrelevant
(symbolic, for example). Do not use string operations based on StringComparison.InvariantCulture in most cases.
One of the few exceptions is when you are persisting linguistically meaningful but culturally agnostic data.

 Do use an overload of the String.Equals method to test whether two strings are equal. For example, to test if
two strings are equal ignoring the case,

if (str1.Equals(str2, StringComparison.OrdinalIgnoreCase))

If (str1.Equals(str2, StringComparison.OrdinalIgnoreCase)) Then

 Do not use an overload of the String.Compare or CompareTo method and test for a return value of zero to
determine whether two strings are equal. They are used to sort strings, not to check for equality.

 Do use the String.ToUpperInvariant method instead of the String.ToLowerInvariant method when you
normalize strings for comparison.

4.7 Arrays and Collections
 You should use arrays in low-level functions to minimize memory consumption and maximize performance.
In public interfaces, do prefer collections over arrays.

Collections provide more control over contents, can evolve over time, and are more usable. In addition, using
arrays for read-only scenarios is discouraged as the cost of cloning the array is prohibitive.

However, if you are targeting more skilled developers and usability is less of a concern, it might be better to use
arrays for read-write scenarios. Arrays have a smaller memory footprint, which helps reduce the working set,
and access to elements in an array is faster as it is optimized by the runtime.

 Do not use read-only array fields. The field itself is read-only and can’t be changed, but elements in the array
can be changed. This example demonstrates the pitfalls of using read-only array fields:

Bad:
public static readonly char[] InvalidPathChars = { '\"', '<', '>', '|'};

This allows callers to change the values in the array as follows:

InvalidPathChars[0] = 'A';

http://1code.codeplex.com/
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinal.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinalignorecase.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.currentculture.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinal.aspx
http://msdn.microsoft.com/en-us/library/system.stringcomparison.ordinalignorecase.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo.invariantculture.aspx
http://msdn.microsoft.com/en-us/library/system.string.equals.aspx
http://msdn.microsoft.com/en-us/library/system.string.compare.aspx
http://msdn.microsoft.com/en-us/library/system.string.compareto.aspx
http://msdn.microsoft.com/en-us/library/system.string.toupperinvariant.aspx
http://msdn.microsoft.com/en-us/library/system.string.tolowerinvariant.aspx

Page 60

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Instead, you can use either a read-only collection (only if the items are immutable) or clone the array before
returning it. However, the cost of cloning the array may be prohibitive.

public static ReadOnlyCollection<char> GetInvalidPathChars()

{

 return Array.AsReadOnly(badChars);

}

public static char[] GetInvalidPathChars()

{

 return (char[])badChars.Clone();

}

 You should use jagged arrays instead of multidimensional arrays. A jagged array is an array with elements
that are also arrays. The arrays that make up the elements can be of different sizes, leading to less wasted space
for some sets of data (e.g., sparse matrix), as compared to multidimensional arrays. Furthermore, the CLR
optimizes index operations on jagged arrays, so they might exhibit better runtime performance in some
scenarios.

// Jagged arrays

int[][] jaggedArray =

{

 new int[] {1, 2, 3, 4},

 new int[] {5, 6, 7},

 new int[] {8},

 new int[] {9}

};

Dim jaggedArray As Integer()() = New Integer()() _

{ _

 New Integer() {1, 2, 3, 4}, _

 New Integer() {5, 6, 7}, _

 New Integer() {8}, _

 New Integer() {9} _

}

// Multidimensional arrays

int [,] multiDimArray =

{

 {1, 2, 3, 4},

 {5, 6, 7, 0},

 {8, 0, 0, 0},

 {9, 0, 0, 0}

};

Dim multiDimArray(,) As Integer = _

{ _

http://1code.codeplex.com/

Page 61

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 {1, 2, 3, 4}, _

 {5, 6, 7, 0}, _

 {8, 0, 0, 0}, _

 {9, 0, 0, 0} _

}

 Do use Collection<T> or a subclass of Collection<T> for properties or return values representing read/write
collections, and use ReadOnlyCollection<T> or a subclass of ReadOnlyCollection<T> for properties or return
values representing read-only collections.

 You should reconsider the use of ArrayList because any objects added into the ArrayList are added as
System.Object and when retrieving values back from the arraylist, these objects are to be unboxed to return the
actual value type. So it is recommended to use the custom typed collections instead of ArrayList. For
example, .NET provides a strongly typed collection class for String in System.Collection.Specialized, namely
StringCollection.

 You should reconsider the use of Hashtable. Instead, try other dictionary such as StringDictionary,
NameValueCollection, HybridCollection. Hashtable can be used if less number of values is stored.

 When you are creating a collection type, you should implement IEnumerable so that the collection can be
used with LINQ to Objects.

 Do not implement both IEnumerator<T> and IEnumerable<T> on the same type. The same applies to the
nongeneric interfaces IEnumerator and IEnumerable. In other words, a type should be either a collection or an
enumerator, but not both.

 Do not return a null reference for Array or Collection. Null can be difficult to understand in this context. For
example, a user might assume that the following code will work. Return an empty array or collection instead of a
null reference.

int[] arr = SomeOtherFunc();

foreach (int v in arr)

{

 ...

}

4.8 Structures
 Do ensure that a state where all instance data is set to zero, false, or null (as appropriate) is valid. This
prevents accidental creation of invalid instances when an array of the structs is created.

 Do implement IEquatable<T> on value types. The Object.Equals method on value types causes boxing and its
default implementation is not very efficient, as it uses reflection. IEquatable<T>.Equals can have much better
performance and can be implemented such that it will not cause boxing.

4.8.1 Structures vs. Classes

 Do not define a struct unless the type has all of the following characteristics:

http://1code.codeplex.com/

Page 62

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

• It logically represents a single value, similar to primitive types (int, double, etc.).
• It has an instance size fewer than 16 bytes.
• It is immutable.
• It will not have to be boxed frequently.

In all other cases, you should define your types as classes instead of structs.

4.9 Classes
 Do use inheritance to express “is a” relationships such as “cat is an animal”.

 Do use interfaces such as IDisposable to express “can do” relationships such as using “objects of this class can
be disposed”.

4.9.1 Fields

 Do not provide instance fields that are public or protected. Public and protected fields do not version well
and are not protected by code access security demands. Instead of using publicly visible fields, use private fields
and expose them through properties.

 Do use public static read-only fields for predefined object instances.

 Do use constant fields for constants that will never change.

 Do not assign instances of mutable types to read-only fields.

4.9.2 Properties
 Do create read-only properties if the caller should not be able to change the value of the property.

 Do not provide set-only properties. If the property getter cannot be provided, use a method to implement
the functionality instead. The method name should begin with Set followed by what would have been the
property name.

 Do provide sensible default values for all properties, ensuring that the defaults do not result in a security hole
or an extremely inefficient design.

 You should not throw exceptions from property getters. Property getters should be simple operations
without any preconditions. If a getter might throw an exception, consider redesigning the property to be a
method. This recommendation does not apply to indexers. Indexers can throw exceptions because of invalid
arguments. It is valid and acceptable to throw exceptions from a property setter.

4.9.3 Constructors

 Do minimal work in the constructor. Constructors should not do much work other than to capture the
constructor parameters and set main properties. The cost of any other processing should be delayed until
required.

http://1code.codeplex.com/

Page 63

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Do throw exceptions from instance constructors if appropriate.

 Do explicitly declare the public default constructor in classes, if such a constructor is required. Even though
some compilers automatically add a default constructor to your class, adding it explicitly makes code
maintenance easier. It also ensures the default constructor remains defined even if the compiler stops emitting
it because you add a constructor that takes parameters.

 Do not call virtual members on an object inside its constructors. Calling a virtual member causes the most-
derived override to be called regardless of whether the constructor for the type that defines the most-derived
override has been called.

4.9.4 Methods

 Do place all out parameters after all of the pass-by-value and ref parameters (excluding parameter arrays),
even if this results in an inconsistency in parameter ordering between overloads.

 Do validate arguments passed to public, protected, or explicitly implemented members. Throw
System.ArgumentException, or one of its subclasses, if the validation fails: If a null argument is passed and the
member does not support null arguments, throw ArgumentNullException. If the value of an argument is outside
the allowable range of values as defined by the invoked method, throw ArgumentOutOfRangeException.

4.9.5 Events
 Do be prepared for arbitrary code executing in the event-handling method. Consider placing the code where
the event is raised in a try-catch block to prevent program termination due to unhandled exceptions thrown
from the event handlers.

 Do not use events in performance sensitive APIs. While events are easier for many developers to understand
and use, they are less desirable than Virtual Members from a performance and memory consumption
perspective.

4.9.6 Member Overloading
 Do use member overloading rather than defining members with default arguments. Default arguments are
not CLS-compliant and cannot be used from some languages. There is also a versioning issue in members with
default arguments. Imagine version 1 of a method that sets an optional parameter to 123. When compiling code
that calls this method without specifying the optional parameter, the compiler will embed the default value (123)
into the code at the call site. Now, if version 2 of the method changes the optional parameter to 863, then, if the
calling code is not recompiled, it will call version 2 of the method passing in 123 (version 1’s default, not version
2’s default).

Good:
Public Overloads Sub Rotate(ByVal data As Matrix)

 Rotate(data, 180)

End Sub

Public Overloads Sub Rotate(ByVal data As Matrix, ByVal degrees As Integer)

 ' Do rotation here

End Sub

http://1code.codeplex.com/

Page 64

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Bad:
Public Sub Rotate(ByVal data As Matrix, Optional ByVal degrees As Integer = 180)

 ' Do rotation here

End Sub

 Do not arbitrarily vary parameter names in overloads. If a parameter in one overload represents the same
input as a parameter in another overload, the parameters should have the same name. Parameters with the
same name should appear in the same position in all overloads.

 Do make only the longest overload virtual (if extensibility is required). Shorter overloads should simply call
through to a longer overload.

4.9.7 Interface Members
 You should not implement interface members explicitly without having a strong reason to do so. Explicitly
implemented members can be confusing to developers because they don’t appear in the list of public members
and they can also cause unnecessary boxing of value types.

 You should implement interface members explicitly, if the members are intended to be called only through
the interface.

4.9.8 Virtual Members

Virtual members perform better than callbacks and events, but do not perform better than non-virtual methods.

 Do not make members virtual unless you have a good reason to do so and you are aware of all the costs
related to designing, testing, and maintaining virtual members.

 You should prefer protected accessibility over public accessibility for virtual members. Public members
should provide extensibility (if required) by calling into a protected virtual member.

4.9.9 Static Classes
 Do use static classes sparingly. Static classes should be used only as supporting classes for the object-oriented
core of the framework.

4.9.10 Abstract Classes
 Do not define public or protected-internal constructors in abstract types.

 Do define a protected or an internal constructor on abstract classes.

A protected constructor is more common and simply allows the base class to do its own initialization when
subtypes are created.

public abstract class Claim

{

 protected Claim()

 {

http://1code.codeplex.com/

Page 65

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 ...

 }

}

An internal constructor can be used to limit concrete implementations of the abstract class to the assembly
defining the class.

public abstract class Claim

{

 internal Claim()

 {

 ...

 }

}

4.10 Namespaces
 Do use the default namespaces of projects created by Visual Studio in All-In-One Code Framework code
samples. It is not necessary to rename the namespace to the form of Microsoft.Sample.TechnologyName.

4.11 Errors and Exceptions

4.11.1 Exception Throwing
 Do report execution failures by throwing exceptions. Exceptions are the primary means of reporting errors in
frameworks. If a member cannot successfully do what it is designed to do, it should be considered an execution
failure and an exception should be thrown. Do not return error codes.

 Do throw the most specific (the most derived) exception that makes sense. For example, throw
ArgumentNullException and not its base type ArgumentException if a null argument is passed. Throwing
System.Exception as well as catching System.Exception are nearly always the wrong thing to do.

 Do not use exceptions for the normal flow of control, if possible. Except for system failures and operations
with potential race conditions, you should write code that does not throw exceptions. For example, you can
check preconditions before calling a method that may fail and throw exceptions. For example,

// C# sample:

if (collection != null && !collection.IsReadOnly)

{

 collection.Add(additionalNumber);

}

' VB.NET sample:

If ((Not collection Is Nothing) And (Not collection.IsReadOnly)) Then

 collection.Add(additionalNumber)

End If

http://1code.codeplex.com/

Page 66

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Do not throw exceptions from exception filter blocks. When an exception filter raises an exception, the
exception is caught by the CLR, and the filter returns false. This behavior is indistinguishable from the filter
executing and returning false explicitly and is therefore very difficult to debug.

' VB.NET sample

' This is bad design. The exception filter (When clause)

' may throw an exception when the InnerException property

' returns null

Try

 ...

Catch e As ArgumentException _

When e.InnerException.Message.StartsWith("File")

 ...

End Try

 Do not explicitly throw exceptions from finally blocks. Implicitly thrown exceptions resulting from calling
methods that throw are acceptable.

4.11.2 Exception Handling
 You should not swallow errors by catching nonspecific exceptions, such as System.Exception,
System.SystemException, and so on in .NET code. Do catch only specific errors that the code knows how to
handle. You should catch a more specific exception, or re-throw the general exception as the last statement in
the catch block. There are cases when swallowing errors in applications is acceptable, but such cases are rare.

Good:
// C# sample:

try

{

 ...

}

catch(System.NullReferenceException exc)

{

 ...

}

catch(System.ArgumentOutOfRangeException exc)

{

 ...

}

catch(System.InvalidCastException exc)

{

 ...

}

' VB.NET sample:

Try

 ...

Catch exc As System.NullReferenceException

http://1code.codeplex.com/

Page 67

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 ...

Catch exc As System.ArgumentOutOfRangeException

 ...

Catch exc As System.InvalidCastException

 ...

End Try

Bad:
// C# sample:

try

{

 ...

}

catch (Exception ex)

{

 ...

}

' VB.NET sample:

Try

 ...

Catch ex As Exception

 ...

End Try

 Do prefer using an empty throw when catching and re-throwing an exception. This is the best way to preserve
the exception call stack.

Good:
// C# sample:

try

{

 ... // Do some reading with the file

}

catch

{

 file.Position = position; // Unwind on failure

 throw; // Rethrow

}

' VB.NET sample:

Try

 ... ' Do some reading with the file

Catch ex As Exception

 file.Position = position ' Unwind on failure

 Throw ' Rethrow

End Try

http://1code.codeplex.com/

Page 68

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Bad:
// C# sample:

try

{

 ... // Do some reading with the file

}

catch (Exception ex)

{

 file.Position = position; // Unwind on failure

 throw ex; // Rethrow

}

' VB.NET sample:

Try

 ... ' Do some reading with the file

Catch ex As Exception

 file.Position = position ' Unwind on failure

 Throw ex ' Rethrow

End Try

4.12 Resource Cleanup
 Do not force garbage collections with GC.Collect.

4.12.1 Try-finally Block
 Do use try-finally blocks for cleanup code and try-catch blocks for error recovery code. Do not use catch
blocks for cleanup code. Usually, the cleanup logic rolls back resource (particularly, native resource) allocations.
For example,

// C# sample:

FileStream stream = null;

try

{

 stream = new FileStream(...);

 ...

}

finally

{

 if (stream != null)

 {

 stream.Close();

 }

}

' VB.NET sample:

Dim stream As FileStream = Nothing

http://1code.codeplex.com/

Page 69

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Try

 stream = New FileStream(...)

 ...

Catch ex As Exception

 If (stream IsNot Nothing) Then

 stream.Close()

 End If

End Try

C# and VB.NET provide the using statement that can be used instead of plain try-finally to clean up objects
implementing the IDisposable interface.

// C# sample:

using (FileStream stream = new FileStream(...))

{

 ...

}

' VB.NET sample:

Using stream As New FileStream(...)

 ...

End Using

Many language constructs emit try-finally blocks automatically for you. Examples are C#/VB’s using statement,
C#’s lock statement, VB’s SyncLock statement, C#’s foreach statement, and VB’s For Each statement.

4.12.2 Basic Dispose Pattern

The basic implementation of the pattern involves implementing the System.IDisposable interface and declaring
the Dispose(bool) method that implements all resource cleanup logic to be shared between the Dispose method
and the optional finalizer. Please note that this section does not discuss providing a finalizer. Finalizable types
are extensions to this basic pattern and are discussed in the next section. The following example shows a simple
implementation of the basic pattern:

// C# sample:

public class DisposableResourceHolder : IDisposable

{

 private bool disposed = false;

 private SafeHandle resource; // Handle to a resource

 public DisposableResourceHolder()

 {

 this.resource = ... // Allocates the native resource

 }

 public void DoSomething()

 {

 if (disposed)

http://1code.codeplex.com/

Page 70

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 {

 throw new ObjectDisposedException(...);

 }

 // Now call some native methods using the resource

 ...

 }

 public void Dispose()

 {

 Dispose(true);

 GC.SuppressFinalize(this);

 }

 protected virtual void Dispose(bool disposing)

 {

 // Protect from being called multiple times.

 if (disposed)

 {

 return;

 }

 if (disposing)

 {

 // Clean up all managed resources.

 if (resource != null)

 {

 resource.Dispose();

 }

 }

 disposed = true;

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

 Implements IDisposable

 Private disposed As Boolean = False

 Private resource As SafeHandle ' Handle to a resource

 Public Sub New()

 resource = ... ' Allocates the native resource

 End Sub

 Public Sub DoSomething()

http://1code.codeplex.com/

Page 71

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 If (disposed) Then

 Throw New ObjectDisposedException(...)

 End If

 ' Now call some native methods using the resource

 ...

 End Sub

 Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

 If disposed Then

 Return

 End If

 If disposing Then

 ' Clean up all managed resources.

 If (resource IsNot Nothing) Then

 resource.Dispose()

 End If

 End If

 disposed = True

 End Sub

End Class

 Do implement the Basic Dispose Pattern on types containing instances of disposable types.

 Do extend the Basic Dispose Pattern to provide a finalizer on types holding resources that need to be freed
explicitly and that do not have finalizers. For example, the pattern should be implemented on types storing
unmanaged memory buffers.

 You should implement the Basic Dispose Pattern on classes that themselves don’t hold unmanaged resources
or disposable objects but are likely to have subtypes that do. A great example of this is the System.IO.Stream
class. Although it is an abstract base class that doesn’t hold any resources, most of its subclasses do and because
of this, it implements this pattern.

 Do declare a protected virtual void Dispose(bool disposing) method to centralize all logic related to releasing
unmanaged resources. All resource cleanup should occur in this method. The method is called from both the
finalizer and the IDisposable.Dispose method. The parameter will be false if being invoked from inside a finalizer.
It should be used to ensure any code running during finalization is not accessing other finalizable objects. Details
of implementing finalizers are described in the next section.

http://1code.codeplex.com/

Page 72

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

// C# sample:

protected virtual void Dispose(bool disposing)

{

 // Protect from being called multiple times.

 if (disposed)

 {

 return;

 }

 if (disposing)

 {

 // Clean up all managed resources.

 if (resource != null)

 {

 resource.Dispose();

 }

 }

 disposed = true;

}

' VB.NET sample:

Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

 If disposed Then

 Return

 End If

 If disposing Then

 ' Clean up all managed resources.

 If (resource IsNot Nothing) Then

 resource.Dispose()

 End If

 End If

 disposed = True

End Sub

 Do implement the IDisposable interface by simply calling Dispose(true) followed by GC.SuppressFinalize(this).
The call to SuppressFinalize should only occur if Dispose(true) executes successfully.

// C# sample:

public void Dispose()

{

 Dispose(true);

 GC.SuppressFinalize(this);

http://1code.codeplex.com/

Page 73

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

}

' VB.NET sample:

Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

End Sub

 Do not make the parameterless Dispose method virtual. The Dispose(bool) method is the one that should be
overridden by subclasses.

 You should not throw an exception from within Dispose(bool) except under critical situations where the
containing process has been corrupted (leaks, inconsistent shared state, etc.). Users expect that a call to Dispose
would not raise an exception. For example, consider the manual try-finally in this C# snippet:

TextReader tr = new StreamReader(File.OpenRead("foo.txt"));

try

{

 // Do some stuff

}

finally

{

 tr.Dispose();

 // More stuff

}

If Dispose could raise an exception, further finally block cleanup logic will not execute. To work around this, the
user would need to wrap every call to Dispose (within their finally block!) in a try block, which leads to very
complex cleanup handlers. If executing a Dispose(bool disposing) method, never throw an exception if disposing
is false. Doing so will terminate the process if executing inside a finalizer context.

 Do throw an ObjectDisposedException from any member that cannot be used after the object has been
disposed.

// C# sample:

public class DisposableResourceHolder : IDisposable

{

 private bool disposed = false;

 private SafeHandle resource; // Handle to a resource

 public void DoSomething()

 {

 if (disposed)

 {

 throw new ObjectDisposedException(...);

 }

http://1code.codeplex.com/

Page 74

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 // Now call some native methods using the resource

 ...

 }

 protected virtual void Dispose(bool disposing)

 {

 if (disposed)

 {

 return;

 }

 // Cleanup

 ...

 disposed = true;

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

 Implements IDisposable

 Private disposed As Boolean = False

 Private resource As SafeHandle ' Handle to a resource

 Public Sub DoSomething()

 If (disposed) Then

 Throw New ObjectDisposedException(...)

 End If

 ' Now call some native methods using the resource

 ...

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

 If disposed Then

 Return

 End If

 ' Cleanup

 ...

 disposed = True

 End Sub

End Class

http://1code.codeplex.com/

Page 75

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

4.12.3 Finalizable Types
Finalizable types are types that extend the Basic Dispose Pattern by overriding the finalizer and providing
finalization code path in the Dispose(bool) method. The following code shows an example of a finalizable type:

// C# sample:

public class ComplexResourceHolder : IDisposable

{

 bool disposed = false;

 private IntPtr buffer; // Unmanaged memory buffer

 private SafeHandle resource; // Disposable handle to a resource

 public ComplexResourceHolder()

 {

 this.buffer = ... // Allocates memory

 this.resource = ... // Allocates the resource

 }

 public void DoSomething()

 {

 if (disposed)

 {

 throw new ObjectDisposedException(...);

 }

 // Now call some native methods using the resource

 ...

 }

 ~ComplexResourceHolder()

 {

 Dispose(false);

 }

 public void Dispose()

 {

 Dispose(true);

 GC.SuppressFinalize(this);

 }

 protected virtual void Dispose(bool disposing)

 {

 // Protect from being called multiple times.

 if (disposed)

 {

 return;

 }

http://1code.codeplex.com/

Page 76

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 if (disposing)

 {

 // Clean up all managed resources.

 if (resource != null)

 {

 resource.Dispose();

 }

 }

 // Clean up all native resources.

 ReleaseBuffer(buffer);

 disposed = true;

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

 Implements IDisposable

 Private disposed As Boolean = False

 Private buffer As IntPtr ' Unmanaged memory buffer

 Private resource As SafeHandle ' Handle to a resource

 Public Sub New()

 buffer = ... ' Allocates memory

 resource = ... ' Allocates the native resource

 End Sub

 Public Sub DoSomething()

 If (disposed) Then

 Throw New ObjectDisposedException(...)

 End If

 ' Now call some native methods using the resource

 ...

 End Sub

 Protected Overrides Sub Finalize()

 Dispose(False)

 MyBase.Finalize()

 End Sub

 Public Sub Dispose() Implements IDisposable.Dispose

 Dispose(True)

 GC.SuppressFinalize(Me)

 End Sub

http://1code.codeplex.com/

Page 77

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Protect from being called multiple times.

 If disposed Then

 Return

 End If

 If disposing Then

 ' Clean up all managed resources.

 If (resource IsNot Nothing) Then

 resource.Dispose()

 End If

 End If

 ' Clean up all native resources.

 ReleaseBuffer(Buffer)

 disposed = True

 End Sub

End Class

 Do make a type finalizable, if the type is responsible for releasing an unmanaged resource that does not have
its own finalizer. When implementing the finalizer, simply call Dispose(false) and place all resource cleanup logic
inside the Dispose(bool disposing) method.

// C# sample:

public class ComplexResourceHolder : IDisposable

{

 ...

 ~ComplexResourceHolder()

 {

 Dispose(false);

 }

 protected virtual void Dispose(bool disposing)

 {

 ...

 }

}

' VB.NET sample:

Public Class DisposableResourceHolder

 Implements IDisposable

 ...

 Protected Overrides Sub Finalize()

http://1code.codeplex.com/

Page 78

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 Dispose(False)

 MyBase.Finalize()

 End Sub

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ...

 End Sub

End Class

 Do be very careful to make type finalizable. Carefully consider any case in which you think a finalizer is
needed. There is a real cost associated with instances with finalizers, from both a performance and code
complexity standpoint.

 Do implement the Basic Dispose Pattern on every finalizable type. See the previous section for details on the
basic pattern. This gives users of the type a means to explicitly perform deterministic cleanup of those same
resources for which the finalizer is responsible.

 You should create and use a critical finalizable object (a type with a type hierarchy that contains
CriticalFinalizerObject) for situations in which a finalizer absolutely must execute even in the face of forced
application domain unloads and thread aborts.

 Do prefer resource wrappers based on SafeHandle or SafeHandleZeroOrMinusOneIsInvalid (for Win32
resource handle whose value of either 0 or -1 indicates an invalid handle) to writing finalizer by yourself to
encapsulate unmanaged resources where possible, in which case a finalizer becomes unnecessary because the
wrapper is responsible for its own resource cleanup. Safe handles implement the IDisposable interface, and
inherit from CriticalFinalizerObject so the finalizer logic will absolutely execute even in the face of forced
application domain unloads and thread aborts.

/// <summary>

/// Represents a wrapper class for a pipe handle.

/// </summary>

[SecurityCritical(SecurityCriticalScope.Everything),

HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort = true),

SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode = true)]

internal sealed class SafePipeHandle : SafeHandleZeroOrMinusOneIsInvalid

{

 private SafePipeHandle()

 : base(true)

 {

 }

 public SafePipeHandle(IntPtr preexistingHandle, bool ownsHandle)

 : base(ownsHandle)

 {

 base.SetHandle(preexistingHandle);

 }

http://1code.codeplex.com/

Page 79

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),

 DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

 [return: MarshalAs(UnmanagedType.Bool)]

 private static extern bool CloseHandle(IntPtr handle);

 protected override bool ReleaseHandle()

 {

 return CloseHandle(base.handle);

 }

}

/// <summary>

/// Represents a wrapper class for a local memory pointer.

/// </summary>

[SuppressUnmanagedCodeSecurity,

HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort = true)]

internal sealed class SafeLocalMemHandle : SafeHandleZeroOrMinusOneIsInvalid

{

 public SafeLocalMemHandle()

 : base(true)

 {

 }

 public SafeLocalMemHandle(IntPtr preexistingHandle, bool ownsHandle)

 : base(ownsHandle)

 {

 base.SetHandle(preexistingHandle);

 }

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),

 DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

 private static extern IntPtr LocalFree(IntPtr hMem);

 protected override bool ReleaseHandle()

 {

 return (LocalFree(base.handle) == IntPtr.Zero);

 }

}

 Do not access any finalizable objects in the finalizer code path, as there is significant risk that they will have
already been finalized. For example, a finalizable object A that has a reference to another finalizable object B
cannot reliably use B in A’s finalizer, or vice versa. Finalizers are called in a random order (short of a weak
ordering guarantee for critical finalization).

It is OK to touch unboxed value type fields.

http://1code.codeplex.com/

Page 80

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Also, be aware that objects stored in static variables will get collected at certain points during an application
domain unload or while exiting the process. Accessing a static variable that refers to a finalizable object (or
calling a static method that might use values stored in static variables) might not be safe if
Environment.HasShutdownStarted returns true.

 Do not let exceptions escape from the finalizer logic, except for system-critical failures. If an exception is
thrown from a finalizer, the CLR may shut down the entire process preventing other finalizers from executing
and resources from being released in a controlled manner.

4.12.4 Overriding Dispose
If you're inheriting from a base class that implements IDisposable, you must implement IDisposable also. Always
call your base class's Dispose(bool) so it cleans up.

public class DisposableBase : IDisposable

{

 ~DisposableBase()

 {

 Dispose(false);

 }

 public void Dispose()

 {

 Dispose(true);

 GC.SuppressFinalize(this);

 }

 protected virtual void Dispose(bool disposing)

 {

 // ...

 }

}

public class DisposableSubclass : DisposableBase

{

 protected override void Dispose(bool disposing)

 {

 try

 {

 if (disposing)

 {

 // Clean up managed resources.

 }

 // Clean up native resources.

 }

 finally

 {

http://1code.codeplex.com/

Page 81

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 base.Dispose(disposing);

 }

 }

}

4.13 Interop

4.13.1 P/Invoke
 Do consult P/Invoke Interop Assistant and http://pinvoke.net to write P/Invoke signatures.

 You can use IntPtr for manual marshaling. By declaring parameters and fields as IntPtr, you can boost
performance, albeit at the expense of ease of use, type safety, and maintainability. Sometimes it is faster to
perform manual marshaling by using methods available on the Marshal class rather than to rely on default
interop marshaling. For example, if large arrays of strings need to be passed across an interop boundary, but the
managed code needs only a few of those elements, you can declare the array as IntPtr and manually access only
those few elements that are required.

 Do not aggressively pin short-lived objects. Pinning short-lived objects unnecessarily extends the life of a
memory buffer beyond the duration of the P/Invoke call. Pinning prevents the garbage collector from relocating
the bytes of the object in the managed heap, or relocating the address of a managed delegate. However, it is
acceptable to pin long-lived objects, which are ideally created during application initialization, because they are
not moved relative to short-lived objects. It is costly to pin short-lived objects for a long period of time, because
compacting occurs most in Generation 0 and the garbage collector cannot relocate pinned objects. This results
in inefficient memory management that can adversely affect performance. For more information about copying
and pinning, see http://msdn.microsoft.com/en-us/library/23acw07k.aspx.

 Do set CharSet = CharSet.Auto and SetLastError = true in the P/Invoke signature. For example,

// C# sample:

[DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

public static extern SafeFileMappingHandle OpenFileMapping(

 FileMapAccess dwDesiredAccess, bool bInheritHandle, string lpName);

' VB.NET sample:

<DllImport("kernel32.dll", CharSet:=CharSet.Auto, SetLastError:=True)> _

Public Shared Function OpenFileMapping(_

 ByVal dwDesiredAccess As FileMapAccess, _

 ByVal bInheritHandle As Boolean, _

 ByVal lpName As String) _

 As SafeFileMappingHandle

End Function

 You should wrap unmanaged resources in SafeHandle classes. The SafeHandle class is discussed in the
Finalizable Types section. For example, the handle of file mapping is wrapped as follows.

/// <summary>

http://1code.codeplex.com/
http://clrinterop.codeplex.com/
http://pinvoke.net/
http://msdn.microsoft.com/en-us/library/23acw07k.aspx

Page 82

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

/// Represents a wrapper class for a file mapping handle.

/// </summary>

[SuppressUnmanagedCodeSecurity,

HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort = true)]

internal sealed class SafeFileMappingHandle : SafeHandleZeroOrMinusOneIsInvalid

{

 [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode = true)]

 private SafeFileMappingHandle()

 : base(true)

 {

 }

 [SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode = true)]

 public SafeFileMappingHandle(IntPtr handle, bool ownsHandle)

 : base(ownsHandle)

 {

 base.SetHandle(handle);

 }

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success),

 DllImport("kernel32.dll", CharSet = CharSet.Auto, SetLastError = true)]

 [return: MarshalAs(UnmanagedType.Bool)]

 private static extern bool CloseHandle(IntPtr handle);

 protected override bool ReleaseHandle()

 {

 return CloseHandle(base.handle);

 }

}

''' <summary>

''' Represents a wrapper class for a file mapping handle.

''' </summary>

''' <remarks></remarks>

<SuppressUnmanagedCodeSecurity(), _

HostProtection(SecurityAction.LinkDemand, MayLeakOnAbort:=True)> _

Friend NotInheritable Class SafeFileMappingHandle

 Inherits SafeHandleZeroOrMinusOneIsInvalid

 <SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode:=True)> _

 Private Sub New()

 MyBase.New(True)

 End Sub

 <SecurityPermission(SecurityAction.LinkDemand, UnmanagedCode:=True)> _

 Public Sub New(ByVal handle As IntPtr, ByVal ownsHandle As Boolean)

 MyBase.New(ownsHandle)

http://1code.codeplex.com/

Page 83

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

 MyBase.SetHandle(handle)

 End Sub

 <ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success), _

 DllImport("kernel32.dll", CharSet:=CharSet.Auto, SetLastError:=True)> _

 Private Shared Function CloseHandle(ByVal handle As IntPtr) _

 As <MarshalAs(UnmanagedType.Bool)> Boolean

 End Function

 Protected Overrides Function ReleaseHandle() As Boolean

 Return SafeFileMappingHandle.CloseHandle(MyBase.handle)

 End Function

End Class

 You should throw Win32Exception on the failure of P/Invoked functions that set the Win32 last error. If the
function uses some unmanaged resources, free the resource in the finally block.

// C# sample:

SafeFileMappingHandle hMapFile = null;

try

{

 // Try to open the named file mapping.

 hMapFile = NativeMethod.OpenFileMapping(

 FileMapAccess.FILE_MAP_READ, // Read access

 false, // Do not inherit the name

 FULL_MAP_NAME // File mapping name

);

 if (hMapFile.IsInvalid)

 {

 throw new Win32Exception();

 }

 ...

}

finally

{

 if (hMapFile != null)

 {

 // Close the file mapping object.

 hMapFile.Close();

 hMapFile = null;

 }

}

' VB.NET sample:

Dim hMapFile As SafeFileMappingHandle = Nothing

http://1code.codeplex.com/

Page 84

© 2014 Microsoft Corporation. All rights reserved. All-In-One Code Framework (http://1code.codeplex.com)

Try

 ' Try to open the named file mapping.

 hMapFile = NativeMethod.OpenFileMapping(_

 FileMapAccess.FILE_MAP_READ, _

 False, _

 FULL_MAP_NAME)

 If (hMapFile.IsInvalid) Then

 Throw New Win32Exception

 End If

 ...

Finally

 If (Not hMapFile Is Nothing) Then

 ' Close the file mapping object.

 hMapFile.Close()

 hMapFile = Nothing

 End If

End Try

4.13.2 COM Interop
 Do not force garbage collections with GC.Collect to release COM objects in performance sensitive APIs. A
common approach for releasing COM objects is to set the RCW reference to null, and call System.GC.Collect
followed by System.GC.WaitForPendingFinalizers. This is not recommended for performance reasons, because in
many situations it can trigger the garbage collector to run too often. Code written by using this approach
significantly compromises the performance and scalability of server applications. You should let the garbage
collector determine the appropriate time to perform a collection.

 You should use Marshal.FinalReleaseComObject or Marshal.ReleaseComObject to manage the lifetime of an
RCW manually. It has much better performance than forcing garbage collections with GC.Collect.

 Do not make cross-apartment calls. When you call a COM object from a managed application, make sure that
the managed code's apartment matches the COM object's apartment type. By using matching apartments, you
avoid the thread switch associated with cross-apartment calls.

http://1code.codeplex.com/

	1 Overview
	1.1 Principles & Themes
	1.2 Terminology

	2 General Coding Standards
	2.1 Clarity and Consistency
	2.2 Formatting and Style
	2.3 Using Libraries
	2.4 Global Variables
	2.5 Variable Declarations and Initalizations
	2.6 Function Declarations and Calls
	2.7 Statements
	2.8 Enums
	2.8.1 Flag Enums

	2.9 Whitespace
	2.9.1 Blank Lines
	2.9.2 Spaces

	2.10 Braces
	2.11 Comments
	2.11.1 Inline Code Comments
	2.11.2 File Header Comments
	2.11.3 Class Comments
	2.11.4 Function Comments
	2.11.5 Commenting Out Code
	2.11.6 TODO Comments

	2.12 Regions

	3 C++ Coding Standards
	3.1 Compiler Options
	3.1.1 Precompiled Header
	3.1.2 Enable All Warnings, and Treat Them as Errors

	3.2 Files and Structure
	3.2.1 stdafx.h, stdafx.cpp, targetver.h
	3.2.2 Header Files
	3.2.3 Implementation Files

	3.3 Naming Conventions
	3.3.1 General Naming Conventions
	3.3.2 Capitalization Naming Rules for Identifiers
	3.3.3 Hungarian Notation
	3.3.4 UI Control Naming Conventions

	3.4 Pointers
	3.5 Constants
	3.6 Casting
	3.7 Sizeof
	3.8 Strings
	3.9 Arrays
	3.9.1 Array Size
	3.9.2 Array Initialization

	3.10 Macros
	3.11 Functions
	3.11.1 Validating Parameters
	3.11.2 Reference Parameters
	3.11.3 Unreferenced Parameters
	3.11.4 Output String Parameters
	3.11.5 Return Values

	3.12 Structures
	3.12.1 Typedef Structures
	3.12.2 Structure Initialization
	3.12.3 Structures vs. Classes

	3.13 Classes
	3.13.1 Data Members
	3.13.2 Constructors
	3.13.3 Destructors
	3.13.4 Operators
	3.13.5 Function Overloading
	3.13.6 Virtual Functions
	3.13.7 Abstract Classes

	3.14 COM
	3.14.1 COM Interfaces
	3.14.2 COM Interface ID
	3.14.3 COM Classes

	3.15 Allocations
	3.15.1 Smart Pointers

	3.16 Errors and Exceptions
	3.16.1 Errors
	3.16.2 Exceptions

	3.17 Resource Cleanup
	3.18 Control Flow
	3.18.1 Early Returns
	3.18.2 Goto

	4 .NET Coding Standards
	4.1 Design Guidelines for Developing Class Libraries
	4.2 Files and Structure
	4.3 Assembly Properties
	4.4 Naming Convensions
	4.4.1 General Naming Conventions
	4.4.2 Capitalization Naming Rules for Identifiers
	4.4.3 Hungarian Notation
	4.4.4 UI Control Naming Conventions

	4.5 Constants
	4.6 Strings
	4.7 Arrays and Collections
	4.8 Structures
	4.8.1 Structures vs. Classes

	4.9 Classes
	4.9.1 Fields
	4.9.2 Properties
	4.9.3 Constructors
	4.9.4 Methods
	4.9.5 Events
	4.9.6 Member Overloading
	4.9.7 Interface Members
	4.9.8 Virtual Members
	4.9.9 Static Classes
	4.9.10 Abstract Classes

	4.10 Namespaces
	4.11 Errors and Exceptions
	4.11.1 Exception Throwing
	4.11.2 Exception Handling

	4.12 Resource Cleanup
	4.12.1 Try-finally Block
	4.12.2 Basic Dispose Pattern
	4.12.3 Finalizable Types
	4.12.4 Overriding Dispose

	4.13 Interop
	4.13.1 P/Invoke
	4.13.2 COM Interop

